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Towards a Sustainable Disruptive Growth 
Model: Integrating Foresight, Wild Cards  

and Weak Signals Analysis

Abstract

The paper introduces epistemological and methodologi-
cal innovations for analyzing non-linear dynamics in 
sustainability systems, such as deforestation tipping 

points, exponential renewable adoption, and protests driving 
global reform. It focuses on adaptive resilience (e.g. decen-
tralized grids stabilizing renewables) and topological models 
(e.g. network analysis of deforestation or policy diffusion). 
The study develops metrics to assess four dimensions of 
evolutionary change – context, people, process, and impact – 
supporting adaptive resilience and stability. In environmental 
systems, this may involve tracking early deforestation signals 
before tipping points, while in economics, it could mean 
analyzing how small policy shifts trigger market changes. It 
highlights Wild Cards and Weak Signals Analysis within the 

Sustainable Disruptive Growth Model (SD-Growth Model), 
enabling early detection of disruptions – such as AI break-
throughs or geopolitical shifts – so systems can anticipate, 
reorganize, and adapt effectively to shocks.

The research emphasizes constraints as key to resilience 
and stability amid disruptions. It integrates advanced ana-
lytical approaches to monitor and manage simultaneous 
information flows, ensuring efficient responses to shocks. 
The model also explores AI, machine learning, and explain-
able AI (XAI) in labor market dynamics, where predictive 
algorithms can identify trends and mitigate systemic risks. 
By combining quantitative metrics with strategic foresight, 
the framework equips decision-makers to preserve stability, 
sustain functionality, and adapt dynamically to change.
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Introduction
The EEA-Eionet Strategy 2021–2030 highlights the 
growing role of foresight in the European Environ-
ment Agency’s (EEA) work1. To address this, the Sus-
tainable Disruptive Growth Model (SD-Growth Mod-
el) integrates foresight tools, Wild Cards, and Weak 
Signals Analysis to strengthen sustainability strategies. 
The model maintains four interdependent subsystems 
– context, people, process, and impact – to balance sus-
tainable and disruptive growth. It examines disruptive 
dynamics from two key perspectives: (1) how equilib-
rium boundaries shift between stability and disrup-
tion, influencing system performance and triggering 
morphological changes (e.g. climate policies acceler-
ating renewable adoption); and (2) the compatibility 
of metrics, which determines a system’s adaptability 
and transformation (e.g. AI-driven early warning sys-
tems for deforestation). By integrating Wild Cards and 
Weak Signals Analysis, the model anticipates emerging 
disruptions and addresses deep uncertainties in sus-
tainable systems, enabling more resilient and adaptive 
decision-making.
Uncertainty in modeling is central to the SD-Growth 
Model. Der Kiureghian and Ditlevsen (2009) clas-
sify uncertainties as epistemic (reducible through im-
proved data or refined models) and random (irreduc-
ible). Accurately modeling epistemic uncertainty is 
crucial, as it can create dependencies among random 
events, impacting risk assessments (e.g., climate mod-
els predicting wildfire intensity). To address this, the 
model emphasizes Explainable Artificial Intelligence 
(XAI), ensuring that AI-driven systems remain trans-
parent, interpretable, and trustworthy (e.g., XAI-based 
forecasts for labor market shifts). By bridging gaps in 
uncertainty, XAI strengthens reliability, adaptability, 
and informed decision-making within sustainability 
strategies.
Building on this, Marchau et al. (2019) describe deep 
uncertainty as arising when experts lack consensus on 
models, probability distributions, or desired outcomes 
(e.g., predicting economic recovery after financial cri-
ses). This concept aligns with the comparison of eco-
logical and economic resilience, emphasizing phased 
recovery mechanisms to navigate uncertain scenarios 
(Bang et al., 2021). Osband (2023) categorizes indeter-
minacy across domains: randomness in mathematics, 
objective risk in economics, and aleatory uncertainty 
in machine learning (e.g. AI predicting market volatil-
ity). His assertion that “the variance of beliefs” reflects 
the value of new information underscores the SD-
Growth Model’s emphasis on adaptive management 
and informed decision-making.
The SD-Growth Model introduces three management 
frameworks – regular, disruptive, and boundary – 
linked to four archetypal topological modes: transient, 
capture, deep transient, and deep capture. These modes 

illuminate evolutionary phases and stability patterns 
in sustainable systems, offering insights into adaptive 
topological resilience. By incorporating stratified axes, 
the model extends the notions of parallelism, transver-
sality, and concentration, enabling precise measure-
ment of morphological changes and risk areas. These 
mechanisms facilitate development through foresight-
driven scenarios, robust trajectories, and equilibrium 
boundary detection (Yang et al., 2020).
The SD-Growth Model introduces three management 
frameworks – regular, disruptive, and boundary – 
linked to four archetypal topological modes:
•	Transient (e.g., short-term policy shifts impacting 

emissions)
•	Capture (e.g., market dominance by a single re-

newable technology)
•	Deep transient (e.g., temporary but severe eco-

nomic recessions)
•	Deep capture (e.g., long-term monopolization of 

AI infrastructure)
These modes reveal evolutionary phases and stabil-
ity patterns in sustainable systems, offering insights 
into adaptive topological resilience. By incorporating 
stratified axes (e.g. layered socio-economic and en-
vironmental data), the model refines parallelism (e.g. 
simultaneous growth of multiple green industries), 
transversality (e.g. cross-sector policy interactions), 
and concentration (e.g. regional clustering of climate 
adaptation efforts). These mechanisms enhance fore-
sight-driven scenario modeling, enabling robust tra-
jectories and equilibrium boundary detection (Yang et 
al., 2020).
A comparative analysis of Evolutionary vs. Stable 
Models highlights the role of theories in understand-
ing complex systems. Karl Popper’s “Myth of the 
Framework” argues that theories help avoid biases and 
misconceptions, providing a foundation for objec-
tive analysis (Popper, 1994). His view on entropy and 
order  – “randomness reflects our lack of knowledge 
of the prevailing order” – aligns with the SD-Growth 
Model’s approach to managing uncertainty (Popper, 
1992). This theoretical grounding strengthens the 
model’s ability to address epistemic (e.g., data gaps in 
climate projections) and aleatory (e.g., unpredictable 
market fluctuations) uncertainties, making it a key 
tool for navigating disruptive dynamics.
The SD-Growth Model is applied through Horizon Scan-
ning and Foresight, identifying emerging technologies 
and disruptive innovations that drive socio-technical 
transitions toward sustainability (Popper, 2023). These 
processes distinguish emerging futures by analyzing 
contextual drivers of change, enabling adaptive and re-
silient transformations. For example, Horizon Scanning 
tracks AI’s role in green energy, reinforcing the value of 
strategic foresight in shaping sustainable futures.

1	 https://eea.europa.eu/en/about/who-we-are/eea-eionet-strategy, accessed 06.12.2024.
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The model examines regular and disruptive dynamics 
using topological resilience to study adaptation and re-
covery in cyber-physical systems (Yang et al., 2020). It 
highlights:
•	Clusters around behavioral trajectories (e.g., con-

sumer shifts toward electric vehicles)
•	 Equilibrium boundaries (e.g., carbon pricing 

thresholds impacting emissions)
•	 Parallelism (e.g., simultaneous decarbonization of 

energy and transport sectors)
These insights refine the understanding of topological 
modes, improving risk detection and management. By 
linking adaptive topological resilience to real-world 
challenges, the model enhances sustainability strate-
gies while maintaining systemic balance.
The Four-Dimensional Framework – covering Con-
text, People, Process, and Impact – supports adaptive 
decision-making and aligns with sustainability, re-
silience, and foresight goals (Popper et al., 2017). By 
integrating theories, methodologies, and case studies, 
the SD-Growth Model provides a robust foundation 
for managing the complexities of sustainable disrup-
tive growth. Wild Cards and Weak Signals help reveal 
actionable insights under deep uncertainty, while a 
multi-dimensional approach fosters cross-sectoral col-
laboration, essential for tackling interconnected mod-
ern challenges.
Overall, the SD-Growth Model strengthens our capac-
ity to navigate uncertainty, promoting resilience and 
adaptability in the face of disruptive changes. Through 
foresight tools, theoretical grounding, and practical 
applications, it offers a comprehensive pathway to-
ward sustainable development – demonstrating how 
resilience thinking, strategic foresight, and advanced 
modeling can pave the way for a more sustainable and 
adaptive future.

Strategic Foresight for Sustainable  
Innovation
The foresight process integrates reflection, network-
ing, consultation, and discussion to refine visions and 
co-create strategies (Georghiou et al., 2008). Following 
the SMART Foresight Framework (Popper, 2011, 2012; 
Miles, 2013), its five phases – Scoping, Mobilizing, An-
ticipating, Recommending, and Transforming – help 
stakeholders navigate uncertainty and align efforts to-
ward sustainable outcomes.
During Action Roadmapping Management, multi-cri-
teria analysis evaluates practices, outcomes, and par-
ticipants, ensuring strategies are sustainability-orient-
ed. The four dimensions of the framework – Context, 
People, Process, and Impact – bridge the gap between 
visioning and actionable plans (Carayannis, Campbell, 
2009, 2010; Martin, 2012; Miles et al., 2016; Martini et 
al., 2020).
The methodology merges the Foresight Diamond 
(Popper, 2008), topological approaches (e.g. differen-
tial systems, local stability), statistical methods (e.g. 

multivariate factor analysis), and sustainability metrics 
(e.g., ecological health, human vitality). These tools 
identify critical issues, including opportunities, risks, 
and pathways toward sustainable development.
By integrating Comparative Evolutionary Models with 
global case studies, the foresight process demonstrates 
its practical value in diverse contexts. This blend of 
analytical depth and real-world application equips 
stakeholders to handle uncertainty, boost resilience, 
and drive sustainable innovation.

Comparative Evolutionary Models
Researchers across disciplines have developed evolu-
tionary models to understand dynamic systems. No-
table examples include:
•	 Pascal’s Triangle Model (1642): arranges binomial 

coefficients to illustrate combinatorial symmetry 
(e.g., predicting election turnout patterns)

•	Taylor’s Power Series (1715): uses polynomial ap-
proximations for system dynamics (e.g., tracking 
pandemic spread rates) (Bilodeau et al., 2010)

•	Morgan’s Heredity Model (1935): reveals chromo-
somes’ roles in inheritance (e.g., tracing disease 
transmission pathways)

•	Waddington’s Epigenetic Landscape (1957): shows 
how environmental interactions shape evolution-
ary outcomes (e.g., mapping cultural shifts across 
generations)

•	Thom’s Catastrophe Theory (1975): focuses on di-
mension reduction to identify equilibrium zones 
(e.g., foreseeing economic crash thresholds) (Bi-
lodeau et al., 2010)

These evolutionary models each rely on binary inter-
actions – for instance, Pascal’s Triangle with combina-
torial pairs (1, 1), Taylor’s Series with (x, y), or Mor-
gan’s inheritance model using white/black markers  
( , ). Figure 1 presents five models, culminating in 
an extended version of Thom’s approach, which intro-
duces a triangular interaction zone (risk or threshold 
zone) showing how four parametric factors intercon-
nect. The rows represent rates of change in the origi-
nal catastrophe models, while co-diagonal separations 
illustrate dimension reduction via principal compo-
nents. On the diagonal, independent momentum axes 
emerge along principal directions – shedding light 
on risk, equilibrium, and stability zones in line with 
Osband’s (2023) indeterminacy framework. This com-
parative view helps to grasp system dynamics and key 
transitions across different evolutionary models. They 
reveal three primary dynamics:
•	 Horizontal Dynamics: competitiveness and sys-

tem interactions
•	 Vertical Dynamics: growth-oriented, focusing on 

systemic development
•	 Central Dynamics: interplay of competition, har-

mony, risk, and stability (Waddington, 1957; 
Thom, 1975)



2025      Vol. 15  No 1 FORESIGHT AND STI GOVERNANCEFORESIGHT AND STI GOVERNANCE 35

By integrating these perspectives, the SD-Growth 
Model links theoretical constructs with practical 
tools – such as foresight and morphological analysis   
to manage uncertainty, equilibrium boundaries, and 
system resilience. 
Case studies further demonstrate the applicability of 
these models, showcasing how Wild Cards and Weak 
Signals Analysis can anticipate risks and seize oppor-
tunities, supporting sustainable growth. Together, these 
frameworks underscore the importance of combining 
theory and practice to tackle complex global challenges.

Case Studies, Innovative Practices, and the 
Topological Perspective
By combining topological and statistical methods 
with the Foresight Diamond, Horizon Scanning, and 
Foresight Processes, this study identifies constraints, 
breaking points, and ‘weak signals’ that hint at poten-
tial ‘Wild Cards’. These insights feed into a risk-based 
management strategy addressing when and how sys-
tems may experience paralysis or disruption. Four to-
pological modes – transient, capture, deep transient, 
and deep capture – are linked to the Four Management 
Dimensions, reflecting varying depths of change:
•	Transient mode (e.g. temporary shifts in socio-eco-

nomic preferences, Ahamer, 2020)
•	Capture mode (e.g. sustainability-focused business 

models in Sweden’s agri-food sector, Dehghanne-
jad, 2021)

•	Deep transient mode, involving sensitivity analyses 
of deeper systemic changes

•	Deep capture mode, representing stable correla-
tions among behavioral modes

This framework clarifies the topological significance of 
constraints, while ‘weak signals’ at different stages en-
able early detection of disruptive events.

Interconnecting Knowledge (iKNOW) for Weak Sig-
nals Analysis
The iKNOW Project explored how overlooked issues 
can shape or disrupt science, technology, and innova-
tion (STI). It advanced Weak Signals research, defin-

ing these subtle, ambiguous “seeds of change” as early 
indicators of potential high-impact developments (e.g., 
Wild Cards, emerging challenges, or new opportuni-
ties). Although interpretation, importance, and impact 
are often uncertain, systematic monitoring reveals 
valuable insights for early intervention. In contrast, 
Wild Cards are low-probability yet high-impact events 
that can be unexpectedly disruptive (see Appendix). 
When combined with the SMART Foresight Frame-
work, stakeholders can anticipate, recommend, and 
transform TEEPSES (technological, economic, en-
vironmental, political, social, ethical, and spatial) fu-
tures. This integrated approach embeds foresight into 
policy and strategy cycles, ensuring weak signals and 
wild cards inform strategic decisions and long-term 
resilience (Popper, 2011).
Figure 2 illustrates how Topological Analysis connects 
to the Policy & Strategy Cycle (Formulation, Realiza-
tion, Learning) and the Issues Analysis Framework. A 
stratified behavioral function in a production-line sce-
nario highlights four dynamic modes, from maximum 
output (A) to minimum arrival (C), with an inflection 
point (B). Decomposing equilibrium points isolates 
regular dynamics, showing how systems absorb shocks 
and maintain resilience (Yang et al., 2020). On the 
right, Figure 2 showcases the Issues Analysis Frame-
work, emphasizing how different levels of uncertainty 
and interpretative biases influence Weak Signals Anal-
ysis, which is context dependent or situation-bounded 
(Popper et al., 2011; Ravetz et al., 2011). Four Wild 
Card trajectories emerge:
•	Continuing Issues (e.g., cyber attacks)
•	 Ending Issues (e.g., market exit)
•	 Re-emerging Issues (e.g., global pandemic)
•	 Emerging Issues (e.g., new paradigm)

Evaluating process, people, and impact dimensions 
supports co-created action roadmaps, ultimately 
strengthening foresight and resilience in complex sys-
tems.

CASI Framework for Sustainable Innovation
The CASI Framework (CASI-F) – A Common Frame-
work for Assessment and Management of Sustainable 
Innovation (SI) – has been applied across all EU Mem-

Figure 1. Evolutionary vs Stable Models with Disruptive Dynamics 

Source: authors.
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ber States and in regions like Latin America (e.g. Uru-
guay) and the Middle East (e.g. United Arab Emirates). 
Figure 3 presents the CASI-F approach, an inductive 
method for SI assessment and management (top), 
alongside a network analysis of research and innova-
tion (R&I) priorities distilled from 1,852 SI goals into 
10 SI agendas (bottom) (Popper et al., 2017).
The CASI-F framework uses five steps to map innova-
tions, prioritize cases, analyze issues, identify STI ac-
tions, and co-create roadmaps. In Step 5, these road-
maps span four dimensions – Context, People, Process, 
and Impact – across short-, medium-, and long-term 
timelines (Martini et al., 2020). By aligning these four 
CASI-F dimensions with four locally stable topological 
models, the study reveals topological constraints tied 
to equilibrium and depth. For instance:
•	Transient (e.g. AI-driven climate adaptation pilots)
•	Capture (e.g. local carbon sequestration projects)
•	Deep transient (e.g. global circular economy expan-

sions)
•	Deep capture (e.g. region-wide decarbonization 

frameworks)
These perspectives guide STI foresight, revealing 
emerging trends, uncertainties, and prudent prepared-
ness.

Four properties: Management Framework and 
Topological Modes
•	Intrinsic Property focuses on transient context dy-

namics, influencing all process stages as systems 
shift from one state to another. Examples include 
nanotech safety alerts, e.g. coral reef conservation 
efforts (Bang et al., 2021), and iKnow Policy Alert 
(Popper et al., 2011).

•	Evolutionary Property relates to capture topologi-
cal modes, where stable attractors (basins) join two 
states at a shared boundary. This involves structure 
sensitivity, in which morphological constructs share 
internal properties, e.g. iKnow Policy Alert A39 on 
‘Nanotech robots caring for the elderly’ (ibid). Con-
trasting scenarios highlight humility, adaptability, 
and persistence.

•	Transmuting Property is defined by deep transient 
modes, emphasizing unexpected biases in impact 
and development pathways, e.g. iKnow Policy Alert 
A06 on food safety (ibid).

•	Imprinting Property involves deep capture-emission 
dynamics, creating lasting impacts during sensitive 
periods. Examples include the global spread of a 
killer virus, e.g. iKnow Policy Alert 01 (ibid), illus-
trating how deep capture affects ecological systems 
(Hastings, 2004).

Summary
Analyzing the Specific Dynamics behind evolution-
ary processes is vital for managing uncertainties in 
both policy and business. By integrating Foresight, 
Wild Cards, and Weak Signals Analysis, we refine risk 
management (e.g. anticipating market volatility) and 
reliability (e.g. strengthening supply chains) through 
precise uncertainty categorization, paving the way for 
local sustainable disruptive growth.
We identify four levels of growth, each linked to a to-
pological mode – transient, capture, deep transient, 
and deep capture – and three types of dynamics: regu-
lar, disruptive, and boundary. For instance, transient 
growth may involve brief policy changes that shift con-
sumer demand, while capture might describe a new 
platform dominating a local market. A threshold zone 
separates macro (e.g. rapid currency devaluation af-
fecting entire economies) from micro (e.g. DeepSeek’s 
sudden disruption of the AI sector) disruptive behav-
iors. Finally, boundary dynamics concentrate critical 
information – such as system breakpoints or adjacency 
in complex networks – revealing where and when poli-
cymakers or businesses should intervene.

Dimension Reduction
We propose new methods for analyzing non-linear dy-
namics in sustainability systems, focusing on adaptive 
resilience and topological models. By applying dimen-
sion reduction techniques – including singular value 
decomposition (SVD), factor analysis, clustering, and 
policy bundling – we simplify large datasets into man-

Source: authors.
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ageable frameworks, eliminating noise and highlight-
ing critical signals. This process clarifies four correlat-
ed subsystems linked to local stability, while revealing 
essential variables for understanding four stages of 
evolutionary change.
The SD-Growth Model integrates Wild Cards and Weak 
Signals Analysis to preserve local stability amid disrup-
tive events, emphasizing constraints as a path to resil-
ience. A practical example is the dimension reduction 
from 1,852 short-to-long-term goals to 76 R&I pri-
orities and 10 R&I agendas, showing how quantitative, 
semi-quantitative, and qualitative methods can stream-
line complex data in sustainable innovation manage-
ment. Arriving at the 10 SI R&I agendas involves align-
ing Context, People, Process, and Impact with the four 
locally stable topological models – Transient, Capture, 

Deep Transient, and Deep Capture. For instance, AI-
driven climate adaptation pilots (Transient) emphasize 
shifting contexts; local carbon sequestration projects 
(Capture) highlight collaborative processes; global cir-
cular economy expansions (Deep Transient) affect long-
term societal impacts; and region-wide decarbonization 
frameworks (Deep Capture) demonstrate embedded 
systemic change. This integrated viewpoint helps deci-
sion-makers balance resilience, innovation, and stability 
when designing R&I roadmaps.

Integrated Analytical Perspectives
Our analysis includes monitoring and transmitting si-
multaneous information, creating opportunities for ar-
tificial intelligence (AI), machine learning, explainable 
AI (XAI), and relatedness metrics (e.g., cosine similar-

Source: authors.

Figure 3. The CASI-F Framework and Network Analysis

a) The CASI-F to Sustainable Innovation Assessment and Management

b) Network Analysis for R&I Agendas on Sustainable Innovation

Popper R., Villarroel Y., Popper R.W., pp. 32–49
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ity for job skill matching). These tools address labor 
market shifts and motivate the SD-Growth Model.

Achieving High Accuracy and Preserving Essential In-
formation
Dimension Reduction is crucial for simplifying com-
plex datasets while preserving key insights needed for 
sustainable innovation assessment and management. 
Techniques like singular value decomposition enable 
efficient data compression, ensuring that environmen-
tal, economic, and social variables can be analyzed to-
gether without information overload. In communica-
tion theory, reducing noise (Wiener, 1948) addresses 
the entropy problem (Shannon & Weaver, 1949) – the 
tendency toward disorder – so decision-makers can 
focus on relevant signals. Meanwhile, Deng entropy 
(Deng, 2016), based on Pascal’s Triangle, measures un-
certainty in basic probability assignments, and quan-
tum computing merges physics, math, and computer 
science for more advanced information processing. 
Collectively, these methods enhance risk analysis, stra-
tegic foresight, and resource allocation, enabling poli-
cymakers and innovators to anticipate challenges and 
bolster resilience within sustainability systems.
In statistics, dimension reduction (e.g. factor analysis 
for specific variance) aims to maintain accuracy when 
analyzing high-dimensional data (Pearson, 2022; 
Spearman, 1904; Johnson & Wichern, 2014). In topol-
ogy, it involves using canonical models to highlight in-
dependent main directions, clarifying complex inter-
actions (Yang et al., 2020) and showcasing topological 
resilience (e.g. homeomorphisms for stability analysis).
Critical Discourse Analysis (CDA) and Action Re-
search support the SMART Foresight Framework, 
employing dimension reduction to reassess advisors’ 
mindsets about balanced preservation across all levels 
(Velasco, 2017). In linguistics, dimension reduction 
supports depth-based classification – covering lexical, 
semantic, morphological, and compositional effects 
(Pinker, 2007; Huang & Pinker, 2010).
Overall, these approaches integrate economics, topo-
logical methods, statistical analyses, and morphologi-
cal insights, illuminating complex evolutionary frame-
works for sustainable behavior change.

Towards a Sustainable Disruptive Growth 
Model (SD-Growth Model)
In the Four-Dimensional Management Framework, 
we combine Weak Signals and Wild Cards (WIWE) 
analysis across four phases:
1. Stratified Dynamics (e.g. equilibrium sets mapping 
tipping points)
2. Behavioral Convergence (e.g. eigenvalue shifts indi-
cating system alignment)
3. Equilibrium Stability Analysis (e.g. boundary detec-
tion using potential functions)

4. Sustainable Disruptive Growth (e.g. dynamic change 
modeling using nonlinear differential equations)
Using topological modes, we link unexpected realities 
(seen as constraints) with abstract sensitivity levels. 
Each mode – transient, capture, deep transient, and 
deep capture – can be visualized as function graphs 
displaying varying degrees of singularity, shown 
through rates of change. This approach highlights how 
small signals or shocks can trigger significant transi-
tions, guiding innovators and policymakers to manage 
and adapt their sustainability strategies effectively.

A stratified version of topological modes (e.g. layered 
phase transitions in markets) is introduced here. This 
approach treats each one-dimensional stratum of the 
mode’s graph as a solution of a regular dynamical sys-
tem, effectively splitting an initially singular, structur-
ally stable system into two regular subsystems with 
unique, complete solutions. By applying differential 
systems in contact theory (e.g. modeling how supply 
and demand curves dynamically adjust in competitive 
markets), we can detect robust connections among sta-
ble solutions converging to the same closure point – an 
insight that proves useful in mapping innovation eco-
systems and identifying dominant market strategies.
For transient topological modes in their canonical en-
vironments (e.g. unexpected shifts in economic equi-
libria), such robust connections emerge when multiple 
rates of change (1st, 2nd, 3rd derivatives) converge to 
their closure point from both sides. This implies cur-
vature may switch concavity yet preserve slope and ra-
dius – with downward concavity (past dynamics) on 
one side and upward concavity (future outlook) on the 
other.
Figure 4 shows a stratified representation using ana-
lytical expressions vk and rates of change sk, for k=1 
to 4. Each behavioral mode – transient, capture, deep 
transient, deep capture – is partitioned into two one-
dimensional strata plus a zero-stratum (the closure 
point). Link points (yellow or green) lie near the zero 
stratum, indicating where behavioral dynamics shift. 
Two white link points reveal disruptive transitions 
(e.g. supply-chain breakdown leading to a new mar-
ket normal). The i-th slope function (i-th derivative) 
is calculated at these points, and if left and right lim-
its coincide, it signals a robust connection – key for 
systemic stability. Finally, the deep transient mode is 
more fragile, since rates of change vanish at zero up 
to the fourth order, showing non-zero behavior only 
at the fifth – underlining long-term vulnerabilities in 
complex innovation ecosystems.. 
In the Appendix, you can find details about the strati-
fied axis   ψi (e.g. layered policy thresholds) – also 
known as the Context Dimension Management Axis, 
which includes elements such as  ’Momentum’, ’Fore-
sight’, ’Resources’, and ’Mobilization’, all crucial for  in-
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novation and strategic planning (Martini et al., 2020). 
The ψi -parametric family is represented by V1. When 
the parameter is positive, the rate of change of the to-
pological transient mode (e.g. quick shifts in markets) 
is linked to specific variance. This link highlights how 
shifts in a representative mode mirror key variation, es-
sential for understanding disruptive dynamics  in sus-
tainable systems.
The relationship between  specific variance  and 
the transient topological mode is shown analytically in 
the Appendix. The singular set (e.g. boundary points 
of transformations), (Sv1), representing the equilibri-
um set of the transient mode behavior, defines a near-
by threshold zone, allowing concepts like parallelism, 
transversality, and concentration to explain transitions 
within this zone. Inside, the behavior compresses and 
reflects; outside, it expands and reflects. This duality il-
lustrates how constraints affect the stability and evolu-
tion of complex systems, offering a framework to ana-
lyze and manage them in sustainable contexts.
The risk zone, bordered by singular points, holds 
the critical changes in behavior. Transversal transit 
through this risk zone, connects different behavioral 
states, aiding in identifying and managing potential 
risks and disruptive behaviors. Figure 5 (left) shows 
the threshold zone, defined by two symmetric curves 
γi, denoted by G(γi

± ), as explained further in the Ap-
pendix.
There are three transversality types – Regular (R), Dis-
ruptive (D), and Boundary (B) – which define trans-
versal lines to the axis ψi. Specifically, L1(R), L−1(D), 
and L0(B) intersect the Regular (ψi=1), Disruptive 
(ψi=−1), and Boundary (ψi=0) points respectively. For 
instance, Regular transversality might reflect standard 
supply-demand adjustments, Disruptive transversality 
could manifest as abrupt AI-driven policy shifts, and 
Boundary transversality can denote cross-sector trade 
negotiations.
Figure 5 (middle) illustrates parallelism, concentration, 
and multi-fibration (e.g. parallel AI deployments, con-
centration of green investments, multi-fibration link-
ing economic sectors). On the right, the figure shows 
parallel lines traversing the negative ψi axis – indicat-

ing disruptive dynamics. Three notable closure points 
capture Momentum (a maximal or unstable attractor), 
Foresight (a minimal or stable attractor), and an inflec-
tion point (tied to Resources and Mobilization). These 
points highlight how behavioral trajectories with ro-
bust connections tend to converge on shared destina-
tions, emphasizing the need for higher-order contact 
coordinates to enable or reject connections across be-
havioral dynamics.
Five operations guide these transitions:
1.	 Symmetries (input/output vs. equilibrium) around 

a  parametric neutral axis  (ψi​) (e.g.  average CO2​ 
footprints), which measures variance (distance to 
a mean).

2.	 Expansion & symmetry away from equilibrium.
3.	 Compression & symmetry  inside the threshold 

zone.
4.	 Robust connections aiding transmission of behavior.
5.	 Resilient trajectories  with a  quadratic rate of 

change.
The  SD-Growth Model  helps form  evolutionary clus-
ters, tracing parts of behavioral trajectories  to  visu-
alize  potential  arrival connections  and spot synergy 
gaps  (e.g. mismatched AI–climate policies). Laurett et 
al. (2021) used exploratory factor analysis  in Brazil  to 
gauge local views on  sustainable development, focus-
ing on  natural agriculture  variables. They found two 
main barriers – lack of information/knowledge and lack 
of planning/support, both echoing common obstacles 
to sustainability and synergy in complex systems. 

Applications
Context Dimension Management and the Transient 
Mode 
Transient Mode: A Key to Context Dimension Manage-
ment. A stratified transient mode (see Figs. 4, 5) illus-
trates how dynamic systems undergo layered, multi-
scale changes. This process comprises four phases – 
two macro (e.g., production and distribution) and 
two intangibles (e.g., management and optimization). 
Within this framework, three key transition points 
emerge – a maximum, a minimum, and an inflection 

Figure 4. Topological Modes Graphics & Neighbourhood Dynamics 

Source: authors.
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point (see Fig. 2) – that act as connection layers be-
tween phases. Recognizing these critical elements is 
fundamental for sustainable innovation management, 
as it reveals how systems shift between stable and risky 
conditions. This insight enables policymakers and in-
novators to detect weak signals of disruption early, im-
plement targeted interventions, and adapt strategies to 
maintain local resilience and stability.
Energy Applications: Harnessing Stratified Efficiency. 
In wind energy studies, the potential function mea-
sures average change over time (P = E/t). For ex-
ample, a cylindrical mass of air (density ρ, radius R) 
passing through a vertical disc generates an average 
power of P = 1/2ρπR2vw

3. This concept extends be-
yond physical scales to processes like diffusion, con-
duction, and transport in energy networks, where an 

“efficiency diameter” defines the largest cluster in frag-
mented systems (Aliprantis, 2011). We propose link-
ing a local state variable, vrel (velocity relative to mass 
density), to model a transient mode of behavior as  
v1(vrel) = 1/3vrel

3  – matching the average local power 
and integrating environmental analysis via specific 
variance (ψᵢ). The function V1(ψi,vrel) reveals singular 
points and the topological resilience of behavior. In 
terms of sustainable innovation, this framework helps 
energy planners manage both stable and risky areas, 
ensuring robust connections (e.g. wind farm networks).
Communication Applications: Ensuring Robust Sig-
naling. A maximum behavioral trajectory (e.g. peak 
user participation in digital systems) guides signal 
transmission between a source and a receiver. Figure 
5 (right) illustrates a prototype of L–1 disruptive be-
havior in the variance-variable plane, generating four 
one-dimensional layers: two external (for source and 
destination messaging) and two internal (for opera-
tional systems). Topological resilience visualizes the 
zero-strata – key connection points – as stable links 
between phases. Equation (4) shows that the transient 
mode maintains robust contacts across phases, thereby 
enhancing communication reliability (e.g. in network 
traffic management for smart city projects).
AI Applications: Managing Complex Behaviors. The 
canonical environment of the layered transient mode 

provides detailed precision for AI systems (e.g., robot-
ic coordination and recommendation algorithms). It 
robustly connects different behavioral phases around 
an equilibrium point (Figs. 4, 6), where the weaknesses 
of one phase are offset by the strengths of another, cre-
ating a dynamic capturing/emitting process. As shown 
in Fig. 6 (left, step 4), both parameters act as stable 
attractors that regulate the machine learning process, 
enabling adaptation or failure under stress (e.g., com-
pression or distension in the model’s variance and co-
variance parameters).

Quantum Applications: Leveraging Parallel Frameworks
Topological modes of behavior exhibit a twofold paral-
lelism: within the threshold zone, they enable concur-
rency (e.g., multiple qubits operating simultaneously), 
and outside the threshold zone, they support task de-
composition and simultaneous execution of smaller 
sub-tasks. This dual approach is crucial for managing 
complex sustainability initiatives, such as coordinated 
greenhouse gas reductions across multiple sectors, 
highlighting the value of topological modes for seam-
lessly orchestrating operations across diverse contexts.
Startup Ecosystem Applications: Orchestrating Growth 
Dynamics. Stratified transient modes help pinpoint 
constraints shaping early-stage venture cycles (e.g. piv-
ot signals from founders, synergy cues among inves-
tors). By analyzing short bursts of innovation, we see 
how disruptive factors (e.g., new competitor entries 
or shifts in venture capital) escalate or stabilize. This 
approach fosters a robust ecosystem, ensuring sustain-
able expansions and long-term resilience in startup 
networks.
Data Requirements for Stratified Transient Mode Analy-
sis. Effective application of stratified transient modes 
involves multifaceted datasets. In startup ecosystems, 
for example, funding data (e.g. investment rounds, 
valuations), accelerator or incubator metrics (e.g. ap-
plicant acceptance rates), and pitch-deck analytics (e.g. 
traction and user growth) provide quantitative indica-
tors. Qualitative inputs (e.g. mentor feedback, founder 
surveys) capture contextual nuances, while hybrid 
data streams (e.g. regional policy changes, co-working 

Figure 5. Transient Mode & Stratification by Equilibrium

Source: authors.
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space usage) further enrich analysis. By combining 
these diverse sources, organizations can detect hidden 
constraints, track evolving behaviors, and develop re-
silient strategies for sustainable growth.
Synthesis and Multi-Level Analysis. Overall, these ap-
plication examples – spanning energy, communication 
systems, AI, quantum computing, and startup ecosys-
tems – show how topological constraints and stratified 
transient modes guide sustainable innovation man-
agement. At the micro level, the SD-Growth Model 
pinpoints disruptive dynamics within threshold zones, 
highlighting wave-like behaviors tied to system depth. 
Beyond these zones, regular behaviors dominate at 
the macro level. Identifying equilibrium sets and to-
pological constraints supports in-depth exploration of 
behavioral shifts.
When behavioral trajectories converge on a common 
closure point, their topological resilience drives col-
laborative innovation, vital for sustainable outcomes 
in complex systems. The Context Dimension is para-
mount, shaping how local environments – from com-
munity energy programs to startup hubs – can nurture 
robust clusters for long-term success. This approach 
depends on diverse data sources (e.g. sensor readings, 
financial metrics, mentor surveys) to detect hidden 
constraints, track evolving behaviors, and adapt strate-
gies effectively for resilient, multi-scale growth. 

People Dimension Management and  
Capture Mode of Behaviour 
The People Dimension Management involves aspects 
such as ’aptitude’ (current skill sets) and ’attitude’ (be-
haviour and motivation) linked to innovation. These 
factors are essential in the foresight process, particu-
larly during the mobilizing phase, which encompasses 
activities like contract negotiations and engaging tar-
get groups, helping to locate equilibrium points where 
cooperation and networking can stabilize.
Mobilizing represents the second phase of Foresight. 
identifying three key topological moments, two com-
peting attractors which are minimum points (mP), 
namely: the ´aptitude´ a locally stable mP- attractor, 
the attitude a simultaneous  mP-attractor;  and,  a neu-
tral point (NP), together with a balance point between 
these two attractors ( within the scoping phase, where 
cooperation and networking can stabilize). Near the 
center of balance, the two competing attractors (apti-
tude and attitude) have the opportunity to jump from 
one level to another, leading to a possible detection of 
those ‘key moments’ for leaps in development or dis-
ruptive innovation; connected by two fundamental as-
pects: financing and foresight mobilization, where ´co-
operation and networking´ could attain a locally stable 
cluster equilibrium. 
The capture topological mode represented by Figure 
6 (the second function, Appendix, Table A1), exhibits 
its behavior inside a parametric family of behavioral 
functions; depending on two parametric factors rep-

resenting. The figure right shows its complexity and 
restrictions through the equilibrium analysis. The left 
figure is divided into two zones: non-disruptive behav-
ior, represented by the line L1, and disruptive behavior, 
represented by the line L−1 transverse to a cusp curve; 
and the line L0, the boundary between two types of be-
havior. 
An equilibrium analysis similar to the Context Man-
agement Dimension, allows defining the set of the 
singular points which are distributed in the form of a 
curved cusp with bifurcation pont at zero. The trans-
versal factor, ηi, incorporates a new measure, which 
shows how the trajectories of behavior can preserve 
harmonious parallelism of the ψi axis, which exhibits a 
bimodality in its transversal transit through the ηi axis. 
This bimodality illustrates how constraints (the cusp 
curve as boundary of a ’threshold zone’ or risk zone) 
impact the stability and evolution of complex systems 
with a parallelism induced by a threshold zone. 
The Figure 6 right, show the lifting of the bimodal 
plane; at the bottom the image shows seven waves 
numbered from one to seven, representing a strategic 
cycle that allow crossing the area through a resilient 
path, monitoring the Weak Signals of the behavior 
function, as in the case of 2. The cicle shows how two 
behaviour attractors (the attractor (1) and the attractor 
(7), when the function V2 take minimum value, change 
progressively from one mode to another, passing for 
stability (4), in whose proximity the occurrence of 
a jump to the top layer, could be favorable, for pos-
sible innovation (and after, going to the right), or cata-
strophic shock (returning to the left and generating a 
cycle falling down and jump up again. 
A natural jump up occurs on the seventh step, hence 
the importance of identifying the proximity of the 
equilibrium sets; also, the parallelisms analysis, con-
centration analysis and the visualization of trajectory 
linked to robust connections and risk analysis. Barunik 
and Vosvrda (2009) adapted representative of the cap-
ture topological mode to stock market data, explaining 
the fall of the stock markets, using data from the US 
stock markets. 
The Dimension People equilibrium dynamics is linked 
to stable attractor points and jumps between different 
behaviour modes. The “jump up-capturing” archetype 
(Figure 6 emphasizes conditions for disruptive inno-
vation, balancing aptitude (knowledge and research) 
with attitude (experience and tradition) then, enhanc-
ing the depth of morphological change processes is 
encouraged by the emergence of Cluster Grouping 
and Cooperation, on the (context, people) plane, with 
(ψi, ηi), parametric coordinates references (Masini, 
Vasquez, 2000). There can be grouping alignations 
with the spectrum of knowledge states (certainty-risk-
uncertainty-ambiguity), consistent in the cooperative 
behaviour emerging at the bifurcation point (0, 0); co-
operative cluster with recognise specific properties and 
risk dynamic (Vasquez, Ortegón, 2006). 

Popper R., Villarroel Y., Popper R.W., pp. 32–49
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Process Dimension Management and  
the Deep Transient Mode 
Deep Transient Mode: A Key to Process Dimension 
Management. A deep transient mode emerges when 
systems experience longer-lasting transitions – often 
involving complex changes that unfold gradually be-
fore stabilizing. Recognizing this mode is crucial in 
Process Dimension Management, which addresses 
Catalysts (factors initiating and implementing in-
novation) and Fosterers (elements consolidating and 
diffusing innovation). By identifying deep transient 
behaviors, managers can guide innovation processes 
through prolonged shifts, ensuring resilient and sus-
tainable transformation over time.
Process Dimension Management. In this dimension, 
function V3 defines a canonical neighborhood of the 
deep transient mode, while its slope function s3(hi) 
(linked to the fourth statistical moment) captures in-
novation’s rate of change. A bias factor ξi introduces 
a third parametric axis – in addition to ψi and ηi – al-
lowing growth within an equilibrium zone. Figure 7 il-
lustrates these parametric axes at the center, showing 
a curvilinear polygon sliding along ψi and displaying 
two behaviors:
•	 Regular (ψi>0, e.g. ψi=1)
•	 Non-regular (ψi<0, e.g. ψi=−1)

The resulting  stratified surface  contracts near  zero, 
revealing  two symmetric cusps  influenced by  ξi​
. When ξi​ shifts, the system can undergo a behavioral 
change, marking critical thresholds for process-driven 
innovations.
Case Study on Aphid Population (Wu et al., 2014). An 
example from ecological management highlights how 
monitoring equilibrium zones is essential in dynamic 
systems. Let hi be Aphid population density, ψi an envi-
ronmental control factor, ηi the crop condition (carry-
ing capacity), and ξi a predator factor. A representative 
unfolding function captures how state variable hi be-
haves under control conditions, influencing morpho-
logical changes in pest management – much like deep 
transient modes in innovation processes.
Applications in Startup Ecosystem Orchestration. For 
startups, the deep transient mode spotlights prolonged 
shifts in processes – for example, a multi-stage pivot 
driven by new market insights. Catalysts might be ac-
celerator programs and angel investments, while Fos-
terers could be industry partnerships and user com-
munity growth. By tracking parametric shifts (ψi,ηi,ξi), 
founders can spot cusp points that signal slow-building 
transitions, helping them fine-tune product rollouts or 
scale more sustainably.
Data Requirements for Deep Transient Mode Analy-
sis. To understand deep transient modes in process 
management, mixed data are crucial: Quantitative: 
Longitudinal metrics (e.g., implementation timelines, 
R&D spending, customer retention rates); Qualitative: 
Stakeholder feedback, expert interviews, field observa-
tions capturing persistent challenges or gradual cul-
tural shifts; and Hybrid: Policy updates, organizational 
network measures, pilot project outcomes that help 
correlate slow-moving changes with faster pivots. Such 
integrated datasets reveal extended transitions and un-
derlying biases, enabling adaptation in sustainability-
driven innovation processes.
Synthesis and Multi-Level Analysis. In deep transient 
mode scenarios, prolonged shifts can either strength-
en or disrupt innovation trajectories. At the micro 
level, analyzing catalysts and fosterers pinpoints local 
changes (e.g. team reorganization, ongoing pilot ex-

Source: authors.
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periments) that slowly reshape process outcomes. At 
the macro level, cusp analyses and contracting sur-
faces guide policy interventions, financial backing, or 
ecosystem partnerships aimed at sustaining long-term 
innovation growth. Recognizing these deep transient 
patterns bolsters Process Dimension Management, 
ensuring continuous adaptation and resilience across 
complex innovation landscapes.

Capture Mode and High-Precision Monitoring 

Deep Capture Mode: A Key to Impact Dimension Man-
agement. A deep capture mode emerges when long-
term, transformative change takes root in a system, 
culminating in significant, stable shifts across multiple 
parameters. Recognizing deep capture is critical in Im-
pact Dimension Management, which addresses ‘Trans-
formation’ (positive changes in the quadruple helix of 
science, innovation, and society) and ‘Sustainability’ 
(environmental, societal, economic, governance, and 
infrastructural advancements). By spotting deep cap-
ture patterns, decision-makers can direct high-preci-
sion monitoring toward long-lasting impacts in com-
plex socio-technical systems.

Impact Dimension Management. In this dimension, 
function V4 defines a canonical neighborhood of the 
deep capture mode, while its slope function, s4(hi) (re-
lated to the fifth statistical moment), measures the rate 
of change in agreeing and impacting processes. A new 
butterfly factor (βi) introduces a fourth axis alongside 
ψi, ηi, and ξi, generating stability in an equilibrium zone. 
For βi<0, the maximal trajectory passing transversally 
to ψi marks the boundary of the shock wave – some-
times termed a “pocket organization” in semantic in-
terpretations.

Case Study – Risk Analysis and Policy Recommenda-
tions. Zhu et al. (2023) applied a capture topological 
mode to investigate China’s zirconium industry (2005–
2021), revealing an “early warning” state tied to politi-
cal turbulence and technological advances. Their work 
illustrates how deep capture insights can inform policy 
proposals that strengthen sustainability in vulnerable 
industries.

Applications in Startup Ecosystem Management. For 
startups, a deep capture mode highlights long-term 
impact (e.g. systemic shifts in market positioning or 
industry-wide alliances). When transformation occurs 

– encompassing quadruple helix actors such as uni-
versities, industry, government, and society – found-
ers and investors can analyze βi to detect shock wave 
boundaries. Identifying pocket organizations or hid-
den networks may guide sustained growth strategies 
(e.g. global expansions or circular economy initiatives).

Data Requirements for Deep Capture Mode Analysis. 
Effective deep capture assessment demands compre-
hensive datasets: Quantitative: Longitudinal policy 

metrics, macro-level market data, environmental im-
pact scores; Qualitative: Stakeholder interviews (so-
ciety, government), expert panels on technological 
adoption; and Hybrid: Cross-sector collaborations (e.g. 
academia-industry partnerships), funding flows that 
reflect multi-helix engagement. These inputs pinpoint 
equilibrium sets, shock wave boundaries, and butterfly 
factor dynamics, ensuring risk analysis and policy ad-
aptation align with deep, transformative change.
Synthesis and Multi-Level Analysis. In deep capture 
mode scenarios, long-term transformations become 
anchored in impact-oriented dimensions, driving sub-
stantial shifts across entire sectors or regions. At the 
micro level, analyzing butterfly factor (βi) and equilib-
rium zones reveals organizational readiness (e.g. pock-
et organizations fostering breakthrough innovations). 
At the macro level, shock wave boundaries outline 
where policy interventions or stakeholder cooperation 
can secure sustainable advantages. Recognizing deep 
capture patterns fortifies Impact Dimension Manage-
ment, enabling high-precision monitoring and sys-
temic resilience in complex, ever-evolving innovation 
ecosystems. 

Energy: A Key Driver for Sustainable  
Disruptive Growth 
Within the four Management Dimensions – Context, 
People, Process, and Impact – energy systems provide a 
powerful example of how topological modes shape sus-
tainable innovation management. As illustrated earlier 
with wind power (mass of air at average velocity), en-
ergy-related contexts highlight key risk exposures and 
resilience strategies, echoing Cherp and Jewell’s (2014) 

“four A’s of energy security” (availability, accessibility, 
affordability, acceptability) and the vulnerability aris-
ing when vital energy systems intersect with critical 
social functions. According to Americo et al. (2023), 
clean technologies (wind, solar, electric vehicles) pose 

Figure 8. The (hi, ψi)-plane Stratified  
by Depth of Change

Source: authors.
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opportunities and challenges for fossil-fuel producers 
and metals/minerals suppliers, demanding long-term 
adaptation across local and global networks.

Figure 8 demonstrates how the four dimensions in-
teract – Context frames resource availability, People 
drive skills and motivation, Process underpins system 
development, and Impact reflects transformation. This 
stratification reveals zones of energy change where 
threshold overlaps define stable or disruptive behavior. 
Behavioral clustering at close distances (e.g. regional 
cooperatives or innovation alliances) fosters coopera-
tive pathways, parallelism in roles, and concentration 
of efforts. The four structurally stable behavioral mod-
els (depicted in Figure 8 at ψ=−1) each link to a dis-
tinct dimension; together, they enable anticipation of 
system requirements for scalable or disruptive growth.
Moreover, these dynamics mirror market liquidity and 
resilience principles. Effective energy markets share 
traits with well-functioning financial markets – they 
involve diverse participants, reliable price discovery, 
and robust trading mechanisms (Markets Committee, 
2019). Adequate liquidity – or energy supply flexibil-
ity – supports timely transactions and efficient adap-
tation under uncertainty (Logan, Bindseil, 2019). This 
parallel extends to startup or innovation ecosystems 
investing in renewable projects, where stakeholders 
with varied commercial interests must coordinate to 
ensure both resilience and disruptive potential, there-
by advancing sustainable and transformational energy 
solutions. 

Measuring Behavioral Relationships and Economic 
Complexity
Building on the Context Dimension Management 
discussed earlier (momentum and foresight points), 
a system’s future arises from its current momen-
tum and management negotiations across threshold 
zones, bridging two distinct states to reach foresight 
visions. One context measure calculates the distance 
between two canonical behavioral trajectories – for 
instance, (hi,ψi) | ψi=a and (hi,ψi) | ψi=b – where the 
rate of change might be h2+ψ. The difference in rates of 
change is |a − b|, yielding a behavior-specific distance 
for Context, People, Process, or Impact strata.
Hidalgo and Hausmann (2009) introduce an economic 
complexity framework linking countries, their capa-
bilities, and the products requiring those capabilities. 
Under the SD-Growth Model, these could represent a 
source (ψi,ηi,ξi) and target (ψi,ηi,ξi), reflecting ideal con-
nections. The distance between two behaviors is then 
the mean difference of these ideal points. Axis ψi can 
signify momentum-foresight (Context), ηi captures 
skill or attitudinal leaps (People), and ξi reflects inno-
vation bias (Process), influencing the overall impact 
on production or growth. In a startup ecosystem, these 
dimensions help entrepreneurs identify capability gaps 
and potential pivots – bridging the gap between local-
ized production and scalable solutions. Future work 

will explore how these ideal model connections inform 
synergies and cluster formation across context, people, 
process, and impact dimensions.  

Key Outputs
The SD-Growth Model offers a structured framework 
for analyzing non-linear dynamics in sustainability. 
Integrating topological, statistical, and morphological 
analysis, it addresses disruptive, regular, and boundary 
behaviors. By focusing on context, people, process, and 
impact dimensions, it enables more resilient, adaptive, 
and innovative strategies across complex systems, en-
suring sustainable long-term transformations.

Dimension Reduction and Topological Frameworks 
TThe SD-Growth Model employs four stratified mea-
surement axes – linked to the transient, capture, deep 
transient, and deep capture modes – to track morpho-
logical changes by depth. Each axis detects regular, dis-
ruptive, or boundary behavior, linking back to Context, 
People, Process, and Impact dimensions. By reducing 
complexity, the model pinpoints essential behavioral 
shifts for sustainable innovation management (e.g. 
identifying sudden AI disruptions or pivot moments 
in startup ecosystems).

Behavioral Convergence Across Dimensions. Through 
diverse case analyses, the SD-Growth Model highlights 
converging trajectories that share robust connections 
and display adaptive or recovery capabilities, eventu-
ally approaching a common focal point. Recognizing 
these higher-order contact coordinates is crucial for 
aligning resources and fostering collaboration across 
the People (skills, motivation) and Process (catalysts, 
fosterers) dimensions, thereby enabling or rejecting 
specific behavioral connections.

Stratified Dynamics: Macro and Micro. The SD-Growth 
Model differentiates macro-dynamics (outside thresh-
old zones) from micro-dynamics (within threshold 
zones). Macro-dynamics often reflect stable develop-
ments (e.g. steady market growth), while micro-dy-
namics capture disruptive or wave-like changes (e.g. 
small-scale energy cooperatives confronting local 
risks). This stratification supports policymakers and 
innovators in targeting interventions precisely where 
volatility or opportunity is greatest.

Equilibrium Stability and Threshold Zones. At the 
micro level, the model reveals disruptive dynamics 
emerging in risk zones, with varying amplitudes tied 
to system depth. Macro-level behaviors outside these 
zones remain regular. By identifying equilibrium sets 
and topological constraints, the SD-Growth Model 
offers methodological guidance for analyzing behav-
ioral shifts in fields like data analytics, artificial intel-
ligence, astrophysics, and startup ecosystem manage-
ment. Recognizing these threshold zones is vital for 
preventing instability or capitalizing on disruptive 
innovation.
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Advancing Sustainable Growth. By blending manage-
ment frameworks (human-society and foresight pro-
cesses) with morphological, statistical, and topologi-
cal analyses, the SD-Growth Model underscores the 
importance of Context in defining local environments 
that foster cooperative relationships. This facilitates 
sustainable growth and local stability, effectively bridg-
ing morphological changes with potentially disruptive 
yet transformative innovations.
These five features demonstrate the analytical depth 
and strategic insights provided by the SD-Growth 
Model in understanding resilient systems, behavioral 
dynamics, and their implications for sustainability and 
innovation theory. 

Methodological Contributions of the SD-Growth 
Model
The SD-Growth Model presents a multidimensional 
framework analyzing context, people, process, and im-
pact together, enabling a holistic understanding of how 
sustainability and innovations evolve over time and 
space. By stratifying behavioral trajectories into depth-
based phases (e.g. transient, capture, deep transient, deep 
capture), it pinpoints critical transformation points and 
reveals resilience dynamics in complex systems. Using 
topological and statistical tools, the model examines 
morphological changes, identifies equilibrium states, 
and detects disruptive behaviors linked to sustainability 
goals. Its dimension reduction techniques simplify high-
dimensional data, focusing on essential parameters that 
influence socio-sustainable processes – a crucial asset 
for startup or innovation ecosystems exploring new 
markets or technological breakthroughs. By bridging 
biological, statistical, and epidemiological frameworks, 
the model broadens sustainability analysis and offers 
fresh perspectives on topological resilience and emerg-
ing disruptive innovations.

Epistemological Contributions of the SD-Growth 
Model
Adopting a four-dimensional perspective (Context, 
People, Process, Impact), the model underscores the 
interconnectedness of factors shaping sustainable 
disruptive growth. Its depth-based approach moves 
beyond surface-level observations, uncovering un-
derlying forces and emergent properties within adap-
tive systems. By stratifying the evolution of sustain-
able behaviors, the model clarifies how these systems 
maintain topological resilience and stability in the 
face of external shocks – an insight especially relevant 
for innovators managing long-term change. Integrat-
ing biological, statistical, and topological concepts 
strengthens this interdisciplinary stance, revealing the 
mechanisms by which disruptive innovations arise 
in sustainable contexts. In doing so, the SD-Growth 
Model expands the theoretical foundations of sustain-
ability studies, promoting a forward-looking view on 

transformation and evolution that deepens our under-
standing of systemic behaviors and the drivers behind 
radical innovation. 

Conclusions and Practical Implications
By incorporating Context, People, Process, and Impact 
dimensions, this paper’s insights offer policymakers 
and innovators a multi-dimensional lens to shape sus-
tainable innovation ecosystems and enhance resilience. 
Understanding depth analysis and stratified behavioral 
dynamics enables targeted management of innovation 
processes, identifying key transformation points, opti-
mizing resource allocation, and creating environments 
conducive to disruptive growth.
Integrating biological, statistical, and topological 
frameworks supports network analysis and strategic 
planning in socio-technical systems, revealing key ac-
tors, network dependencies, and systemic shifts central 
to ecosystem resilience (e.g., adaptation in renewable 
energy cooperatives or cross-sector startup collabo-
rations). Recognizing risk zones and robust connec-
tions enhances risk management, helping stakeholders 
anticipate disruptions and devise adaptive strategies. 
Likewise, AI-driven analytics can leverage these in-
sights for scenario simulations, sustainability planning, 
and evidence-based decision-making aligned with 
sustainable innovation principles.
Imagine you are piecing together a huge jigsaw puzzle 
where each piece keeps changing shape and size every 
time you try to fit it in. The four dimensions – Context, 
People, Process, and Impact – act like the puzzle’s edges, 
giving you a sense of where to start and how every-
thing might link up. Meanwhile, the four topological 
modes – transient, capture, deep transient, and deep 
capture – are special pieces that unlock new connec-
tions, revealing unexpected patterns or hidden short-
cuts in the bigger picture. Even when it seems impos-
sible, this paper shows which pieces fit, which to rotate, 
and which to save for later, making the puzzle manage-
able and exciting. In doing so, it provides a ground-
breaking blueprint for navigating the ever-evolving 
jigsaw of sustainability, innovation, and disruptive 
transformation – applicable to all fields, from science 
and technology to the humanities.

Further Research Areas
Dynamic Network Analysis. Future work could integrate 
depth analysis and stratified dynamics into network-
oriented methods, examining how topological changes 
over time influence sustainability outcomes. This might 
involve studying behavioral patterns in innovation clus-
ters, tracking persistence of stratified states, and gauging 
long-term resilience against disruptions.
Multi-Level Governance and Complexity. Applying the 
SD-Growth Model to multi-level governance struc-
tures can clarify how local, national, and global poli-
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cies interact in driving innovation diffusion and policy 
effectiveness. Research might explore vertical (nation-
al–local) and horizontal (cross-sector) integration, 
revealing synergies or tensions that affect ecosystem 
resilience.
Integration of Sustainable Behavioral Strategies. Investi-
gating how social norms and individual choices shape 
innovation adoption can deepen our understand-
ing of sustainable behavior. This includes identifying 
decision-making biases, mapping collective behavior 
shifts, and tailoring interventions for increased uptake 
of green technologies, ethical entrepreneurship, or cir-
cular economy models.
Futures Prosperity Index (FPI) or Model (FPM). Build-
ing on the SD-Growth Model’s multidimensional focus 
(context, people, processes, impact), future work could 
develop a Futures Prosperity Index (FPI) or Futures 
Prosperity Model (FPM). This would integrate the fol-
lowing four factors – environmental sustainability, so-
cial and health wellbeing, innovation competitiveness, 
and fiscal/governance resilience – into a composite 
measure. 
Extreme-Scenario Testing and Foresight. Employing 
future-proof methods (Popper, Towpik, 2024; Popper, 
Popper, 2024) within the SD-Growth Model allows 
strategies to be tested against uncertain and disruptive 
scenarios, particularly those affecting public funding 
for research and innovation. This approach strength-
ens policy robustness and refines innovation design, 
equipping decision-makers to meet frontier challenges 
in rapidly evolving fields.
Finally, extending these methodologies beyond sus-
tainability – to fields like ecology, sociology, political 
science, and economics – can help validate and refine 
their applicability, fostering greater coherence and 
synergy in tackling complex global challenges.

Limitations 
A key limitation is the availability and quality of data 
for depth analysis and stratified behavioral dynam-
ics. Overcoming this may require new data collec-
tion methods or leveraging AI and machine learning 
for robust synthesis. Similarly, the sustainability and 
practicality of the models can be challenging, espe-
cially when interpreting and applying results to real-
world scenarios. Researchers might develop simplified 
frameworks or visualization tools to help stakeholders 
grasp ecological dynamics.
Another limitation is generalizing findings across di-
verse ecological contexts and regions. Validating these 
methodologies in varied socio-ecological environ-
ments and institutional settings is essential to confirm 
robustness. Ethical and policy issues also arise when 
predictive analytics and algorithmic models influence 
governance – fairness, transparency, and unintended 
consequences must be assessed. Interdisciplinary col-
laboration is vital; bridging disciplinary gaps and har-
monizing methodologies can significantly advance 
sustainability research.
Moreover, the complex topological modes (tran-
sient, capture, deep transient, deep capture) may hin-
der adoption if stakeholders lack technical expertise. 
Overlapping threshold zones can create ambiguous 
signals, complicating decision-making. While Wild 
Cards (low-probability, high-impact events) are partly 
addressed by Weak Signals Analysis, true Black Swans 
(rare, unforeseeable disruptions) may exceed the 
model’s scope. Sector-specific nuances – from quan-
tum computing to startup ecosystems – might require 
tailored adaptations. Finally, longitudinal datasets cap-
turing shifts in Context, People, Process, and Impact 
are essential to maintain the model’s accuracy in fast-
changing environments.
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The Stratified Axes
The stratified axes, e.g., ψi, represents each stratum, the positive (resp. negative) as image of the real line using exponential 
function. Similarly, the real axis of potential function.

The Local Stability Theorem
Using a stratified version of the theorem, we decompose the behavioural functions into strata. The analytical expression of 
the equations allows demonstrating the relationship between the statistical moments, especially the specific variance with the 
equations shown in the table A1.
Theorem. If a process, controlled by no more than four real factors or parameters, can be described by minimizing or maxi-
mizing a function with one explanatory variable, then any singularities will be like those appearing in any of the following 
archetypal models, where hi represent a density variable in a i locality and ψi, ηi, ξi and βi are real parameters (Thom, 1975).

Table A1: Germs of Functions and their Unfolding
Germ of function Universal unfolding of function

The first function is solution of a differential equation defined by the specific variance, since the rate of change of the behav-
ioral functions coincides with the specific variance. The diagram relates the behaviors in the zero environment. The following 
diagram shows the relation The specific variance as the rate of change of the first function defined in the stability theorem, for 
the case of a positive parameter.

  (1)

Transient model & non-regular points
The threshold zone, defined by two graph, and the bifurcation point (0, 0):

             (2)

Parallelism in the Risk Zone: compression & expansion 
The threshold zone opens up space, like the basing of a river, and induces new notions of parallelism and transversality in the 
variable-parameter plane. New parallelism we defined using a δ compression, for 0 < δ < 1, denoted by cδ, and δ expansion for 
δ greater than zero, denoted by eδ, and given by:

Table A2: Transient Topological Mode. Morphological Changes and Key Information. 

Slope function:        Behaviour:           Unfolding: 
Singular set (Sv1) Bifurcation set (v1) Outlier set (Оv1) Code marks on {ψi}

{(0, 0)}

        (3)

The Maximal Stratified Trajectory of Behaviour & Robust Connection
The plane (stratified by non-regular points) is lifted without non-regular points, denoted E2, to its natural extension to the 
3-space, E3 = E2 × . The natural projection of each point on its base allows to define a fibered manifold , 
and a lifting of E2 using the function v1, i.e., a section η, of the bundle M: given by:

                      (4)

We define an integrable differential system of order three, using a a regular submanifold W  C(3,1)M of the contact manifold 
of order 3 and dimension 1 of the bundle M. (Villarroel, 1995). Then, robustness connection can be defined, introduced, 
converting the behavioral trajectories,namely the ´R-pseudomanifolds´, where R is a parametric group defined by a maximal 
solution of a differential equation; the notion is related with G-pseudomanifold, introduced by R. W. Popper in the case of G 
being a compact Lie group acting on pseudomanifolds (Popper, 2000).

Appendix 1. Topological Stability & Non-Regular Dynamic
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Capture Mode & Parallelism
Similarly, the parallelism in the ’capture mode’ linked to ’people’ is defined by virtue of the coexistence of two modes of be-
havior, analyzed in the ’capture mode’ section.

The depth transient and capture behavior modes are analyzed by decomposing the respective plane by singularities. The no-
tions of parallelism and transversality modes of behavior depth transient and capture are more complex since as the depth 
increases the dimensions involved increase. 

Appendix 2. Key Concepts

Critical Issues Analysis (CIA) is a multidisciplinary, systematic method for identifying, evaluating, and prioritizing issues that 
significantly influence the technological, economic, environmental, political, social, ethical, and spatial (TEEPSES) dimen-
sions of a given context, particularly in relation to sustainable innovations. This approach integrates diverse inputs from cre-
ativity-based, interaction-based, evidence-based, and expertise-based methods to assess, in a structured manner, the potential 
impact and uncertainty of key drivers of change. By doing so, CIA offers a comprehensive framework for tackling complex, 
multifaceted challenges, enabling decision-makers to prioritize issues that demand immediate attention for effective manage-
ment and strategic action.
SMART Foresight is a structured, participatory, forward-looking, and policy-driven process designed to actively engage key 
stakeholders in a comprehensive set of activities. These activities encompass Scoping, Mobilizing, Anticipating, Recommend-
ing, and Transforming (SMART) potential futures across technological, economic, environmental, political, social, and ethi-
cal (TEEPSE) dimensions.
Horizon Scanning (HS) is a structured, ongoing activity designed to “monitor, analyse, and position” (MAP) emerging and 
frontier issues that are relevant to policy, research, and strategic agendas. The issues identified through HS include new or 
emerging trends, policies, practices, stakeholders, services, products, technologies, behaviours, attitudes, as well as unex-
pected events (Wild Cards) and early indicators of change (Weak Signals).
Wild Cards are low-probability, high-impact events that are both unexpected and disruptive (e.g., the 9/11 attacks, environ-
mental catastrophes, or technological failures). These events may also emerge through serendipitous discoveries in scientific 
research (e.g., Penicillin, Dynamite, Viagra, Graphene). Wild Cards can be classified into three categories: nature-related 
surprises, unintentional human-induced events, and intentional human-induced events. In foresight and forward-looking 
research, Wild Cards are increasingly recognized as critical factors for understanding future uncertainties.
Weak Signals are subtle, ambiguous indicators or “seeds of change” that offer early insights or “hints” about potential fu-
ture developments, such as Wild Cards, emerging challenges, or opportunities. These signals are inherently subjective, often 
shaped by the mental frameworks and interpretations of individuals working with limited information on emerging trends, 
developments, or issues within a specific temporal and contextual setting. The “weakness” of these signals corresponds to the 
degree of uncertainty surrounding their interpretation, importance, and potential impacts over the short, medium, or long 
term. Weak Signals are often indistinct observations that serve as early warnings of possible future events with the potential 
to be highly transformative or “game-changing”.
Scenarios are structured narratives that systematically explore potential future developments by analysing trends, uncertain-
ties, and expert insights. Constructed through methodologies such as desk research, workshops, and computational model-
ling, scenarios generate plausible and internally consistent future states. They may integrate expert opinions or reflect the 
collective perspectives of stakeholder groups, facilitating the mapping of alternative futures and guiding decision-making by 
elucidating potential risks, opportunities, and pathways for action. Classic approaches to scenario development include the 
2x2 Approach, which uses a matrix based on two critical drivers; the Archetype Approach, which examines scenarios charac-
terized as “better than expected”, “worse than expected”, and “different than expected”; and the Success Scenarios Approach, 
which delineates a credible and desirable future. Additionally, semi-quantitative techniques that leverage artificial intelligence, 
data analytics, cross-impact analysis, and morphological modelling are gaining importance in scenario development, provid-
ing innovative frameworks for addressing complexity and uncertainty in strategic foresight and planning.
Action Roadmapping (AR) is a structured methodology for coordinating and executing actions at the strategic, tactical, and 
operational levels to achieve innovation objectives. It aligns stakeholders and systematically addresses four key dimensions: 
Context, People, Process, and Impact, each comprising ten critical aspects that drive sustainable innovation. At the strategic 
level, AR guides top decision-makers from government, industry, civil society, and academia (the quadruple helix) to estab-
lish momentum, build foresight, and mobilize resources. Tactical actions translate these objectives into specific interventions, 
such as funding programs and partnerships, equipping stakeholders with the necessary skills and resources. Operational 
actions, led by front-line actors like policymakers and researchers, focus on executing tasks that drive innovation and its 
diffusion. AR ultimately emphasizes long-term impact, fostering systemic transformation and ensuring sustainability across 
environmental, social, and economic dimensions. By integrating actions across all levels, AR supports a cohesive and adaptive 
approach to innovation (Popper, 2008).
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