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Reconfiguring the Battery Innovation Landscape

Abstract

Batteries are critical for energy transition strategies. 
This paper offers a comprehensive assessment of the 
trends and developments of battery innovation. Over 

700,000 patents from the period of 2005-2019 are compiled 
and analyzed. Leading patent applicants and countries of 
origin are identified. Major patent applicants are mostly large 
East Asian companies, while Japan and South Korea are the 
leading countries followed by the US, Germany, and China. 
Different battery designs, the main battery components, and 
interactions with other clean technologies are examined. 
Based on the operative definitions for incremental/radical and 
product/process innovations, a battery innovation typology 

is set forth. Main findings are that patenting in batteries has 
risen robustly and lithium-ion is the most vibrant technology; 
the lead-acid set-up maintains consistent innovation activity, 
lithium-sulfur and flow batteries are the most notable 
emerging technologies; electrodes are the most salient battery 
component, followed by electrolytes, separators, and cell 
housing; the most significant interactions of batteries with 
clean energy technologies are between battery charging and 
photovoltaic energy as well as between battery charging and 
electric vehicles. Incremental innovation represents more 
than half of patents, while product innovation represents 
approximately 70% of total patents.
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Introduction
The need to reduce CO2 emissions and mitigate the cli-
mate crisis was recognized by the 195 countries that 
signed the Paris agreement in December 2015.1 This 
challenge has motivated efforts toward a transforma-
tion in energy production and use. One avenue is 
shifting from a situation of nearly total dependence 
on fossil fuels to a scenario where low-carbon energy 
sources play an increasingly significant role in world 
energy production (Fagerberg et al., 2016). In recent 
years, the deployment of wind and solar photovoltaic 
(PV) energies has risen significantly, reaching 10% of 
the global electricity production in 2021 (IEA, 2021a). 
It is expected that investment in climate change miti-
gating technologies will continue to grow over the next 
decades (IEA, 2021a). The urgency to accelerate these 
investments has been highlighted by the Sixth Assess-
ment Report of the Intergovernmental Panel for Cli-
mate Change (IPCC, 2021). Additionally, the energy 
crises that emerged at the end of 2021 in the context of 
post-coronavirus lockdowns and geopolitical conflicts 
further stressed the need for an accelerated transition 
to energy infrastructures less dependent upon con-
ventional systems. Hence, new ways to make energy 
supply-demand connections less subject to shocks and 
bottlenecks are at a premium.
The increasing use of intermittent and non-control-
lable power sources poses, nevertheless, a key conun-
drum in power grid management and, hence, a severe 
constraint in the ability to achieve a sustainable socio-
technical reconfiguration (Sovacool et al., 2020). Wind 
and photovoltaic (PV) energy output is largely deter-
mined by environmental conditions, with production 
peaks not necessarily matching demand and usage 
behavior. Thus, energy storage is essential to adapt en-
ergy delivery to users’ needs as it allows for harness-
ing surpluses and injecting them into the grid, when 
necessary, thus avoiding waste and reducing stress in 
the distribution infrastructure (Castillo, Gayme, 2014). 
Enabling power adjustments and signal quality control 
is a fundamental benefit of using energy storage. For 
instance, small electricity producers have the oppor-
tunity to accumulate energy surpluses and sell them 
when the sales price is higher, not only smoothing the 
volatility of the system, but also improving its econom-
ic efficiency (Diesendorf, Wiedmann, 2020). Moreover, 
it is known that frequently the potential financial prof-
its are among the stronger motivations for installing 
small renewable energy systems (Hansen et al., 2022). 
Therefore, the development of working storage solu-
tions is part of a broad set of much needed “systemic 
eco-innovations” (Jesus, Mendonça, 2018; Lehmann et 
al., 2022). The increased deployment of storage has the 
potential to increase the competitiveness of renewable 
electricity and enable a larger transition to a smarter, 
cleaner, entrepreneurial, more inclusive, and circular 
society.

Among the many energy storage alternatives, second-
ary rechargeable batteries (or simply batteries here) 
represent a robust approach. Due to their high energy 
density, modularity, and low response time, batteries 
are a very attractive solution for a wide range of en-
ergy storage applications (Van Noorden, 2014). Bat-
tery storage also enhances the stability and reliability 
of electricity grids while the bolstering the flexibility 
on the demand side to accommodate supply shocks 
and overall heightened uncertainty (IEA, 2022). Ad-
vances in battery technologies are thus expected to 
smooth the workings of power systems while opening 
new markets and technological opportunities (Sha-
piro, 2020). Battery evolutionary pathways do matter 
for energy decarbonization, since they are on par with 
government efforts to electrify domestic and mobility 
systems (Velázquez-Martínez et al., 2019). They are 
further critical for energy security, since they consti-
tute buffers against breakdowns in the short run and 
provide increased adaptation options over the long 
run (Azzuni, Breyer, 2019; Jindal, Shrimali, 2022).
One of the main questions this paper aims to address 
is how progress is taking shape in battery technologies. 
In recent years, several studies have addressed innova-
tion in energy technologies (Lee, Lee, 2013; Albino et 
al., 2014; Wong et al., 2014; Silva et al., 2015; Kittner 
et al., 2017). Other studies focused more narrowly on 
battery innovation, both analyzing different aspects of 
lithium-based technological trajectories (Wagner et 
al., 2013; Stephan et al., 2017), as well as alternative 
ones (Aaldering, Song, 2019). Similarly, the innovation 
activities taking place along the electric vehicle value-
chain have been analyzed (Feng, Magee, 2020; Golem-
biewski et al., 2015), and the specific R&D trends of bat-
tery technology in electric vehicles were also addressed 
(Zhang et al., 2017). Additionally, the environmental 
challenges of the battery value chain and the circular 
business model in lithium-ion batteries has a been 
analyzed (Albertsen et al., 2021; Dehghani-Sanij et al., 
2019; Levänen et al., 2018) while others have studied 
the impact of policy instruments on the innovation of 
environmentally friendly technologies (Bergek, Berg-
gren, 2014). Recently, a joint report by the International 
Energy Agency (IEA) and the European Patent Office 
(EPO) analyzed the main patent trends in the field of 
electricity storage in the context of a project concern-
ing pathways to a decarbonized economy (IEA, EPO, 
2021). Patent data highlight global, regional, national, 
and even local topics of wide policy significance, and 
have been a recent focus as an underutilized evidence 
base for mapping and measuring promising technolo-
gies, leading companies, supporting institutions, and 
geographical hotspots (IEA, EPO, 2021).
We seek to contribute to this agenda by committing to 
two research approaches. First, in the context of sys-
temic interdependencies, we adopt a neo-Schumpete-
rian perspective to motivate an evolutionary study of 
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batteries are presently very competitive, it is expected 
that in the coming years, emerging battery technolo-
gies will reach a relevant market share while enabling 
new battery applications (IEA, 2020a). The raw mate-
rial extraction needed to fuel the expected growth of 
the electric mobility and grid storage markets, will put 
increased pressure on ecosystems and socioeconomic 
systems (IEA, 2021b). This issue is of particular con-
cern if the current situation in which battery market 
growth mainly occurs at the expense of Li-ion technol-
ogy remains entrenched. It is therefore important to 
expand the technologies and raw materials used in the 
manufacture of batteries and it is particularly relevant 
to identify the most promising emerging battery tech-
nologies (Metzger et al., 2023). Moreover, the energy 
and transport systems are at forefront of the digitali-
zation revolution (Turovets et al., 2021), which poses 
new challenges for energy storage systems and bat-
tery technologies. Such challenges in “critical technol-
ogy areas” call for innovation (Aaldering, Song, 2019; 
Golembiewski et al., 2015; IEA, 2020b; IEA, 2021b), 
especially in a post-pandemic/geopolitical conflicts/
decoupling scenario where supply-chains are already 
under strain. Surely, one of the main limitations of bat-
tery storage scale-up (and further price decrease) is 
the availability of raw materials; the minerals (namely 
lithium and cobalt) required for their manufacturing 
are themselves non-renewable resources and environ-
mentally expensive to extract, process, and manage 
(Metzger et al., 2023).

Battery innovation through a neo-Schumpeterian lens
This paper analyzes innovation dynamics in the differ-
ent electric battery technologies. Battery, as any tech-
nology, is an artefact with a variety of practical applica-
tions in contemporary society (Dodgson, 2008). The 
knowledge base that enables it is derived from many 
disciplinary domains (some more science-based, like 
electrochemistry and materials science; some emer-
gent from actual production and usage in actual set-
tings, like mechanical engineering and design). The 
usefulness of batteries, however, is manifested in a par-
ticular context: that is, they are a medium that crucially 
interact with other technologies that channel power to 
them and are fed by the power they harness (Berndt, 
2003, p. 3).
Today, batteries lie at the heart of complex engineer-
ing-intensive energy systems (Prencipe et al., 2005) 
that are themselves going through a rapid pro-sustain-
ability structural change (Schot, Steinmueller, 2019). 
Batteries are touchstone devices that receive, store, and 
deliver energy. They exist in a cobweb of interdepend-
encies, i.e., these devices are contingent upon domi-
nant power sources and there are varieties of applica-
tions affecting them in the long-term (see Malhotra et 

electric batteries as “new combinations” that adapt to 
the evolving usage/production landscapes when facing 
modern-day challenges in stationary and mobile stor-
age needs and requirements (Castellacci et al., 2005; 
Caraça et al., 2009). Second, our empirical strategy 
takes on more than 700,000 patent applications as an 
indicator of technological progress in order to profile 
the battery innovation patterns, namely in what con-
cerns the rate and direction of technical change (see 
Lhuillery et al., 2017). What make batteries interesting 
is that they provide ready resilience and actionable op-
portunities, but also the accumulation of capabilities is 
heavily knowledge-intensive and slow to materialize in 
the marketplace (Mendonça et al., 2019).

Batteries in the Energy Transition
The role of storage in the evolving energy system
Energy storage is a puzzle with many pieces: some 
older, bigger, and stable; others less defined, shifting 
in importance or just starting to take shape. By far, the 
most important electricity storage technology in the 
world is pumped hydropower, presently accounting for 
more than 95% of the grid-connected power storage.2 
Despite being a mature technology with low response 
times and a very large capacity range, hydropower sta-
tions need particular geographical and climate condi-
tions; these limitations constrain their use to certain 
regions and seasons while, at the same time, bringing 
about large pressures in terms of land usage and water 
management (Schulz et al., 2017). Several alternative 
energy storage solutions are available, ranging from 
mechanical approaches such as compressed air stor-
age (CAES) to chemical and electrochemical solutions 
such as fuel cells or batteries.
Secondary rechargeable batteries harness electricity in 
the form of electrochemical energy, promoting the in-
terchange between these forms of energy. The electric-
ity stored in the battery can be used at a later moment, 
and possibly, in a different place. During battery charg-
ing, the electricity is transformed into electrochemical 
energy, a process that entails the interaction of the bat-
tery with the electricity production/supply technolo-
gies. When there is an electricity demand, the battery 
converts the electrochemical energy back to electricity, 
therefore, responding to the need while adding to the 
security of the energy system as a whole. The specific 
features of energy demand are profoundly dependent 
upon the type of application, and, in fact, batteries 
have a set of characteristics that allow them to adapt to 
very diverse applications.
As already mentioned, batteries are an interesting 
choice for very distinct applications. Presently, there are 
two emerging storage markets for which electrochemi-
cal batteries are the option of choice: power grids and 
electrical mobility. Although lithium-ion and lead acid 

2  https://sandia.gov/ess-ssl/gesdb/public/statistics.html, accessed 08.08.2022.
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al., 2021). Likewise, the downstream context of battery 
applications matters as it exerts selective pressures that 
are interpreted by innovation agents so as to promote 
adaptation and evolutionary responses. In other words, 
available knowledge contributes to explain the mo-
mentum of technical change, while certain socioeco-
nomic issues encourage or penalize the development of 
specific solutions. This combination of “supply-pushes” 
in power generation alternatives and “demand-pulls” 
in competing domains of application give rise to pat-
terned dynamics often called technological trajecto-
ries (Dosi, 1982; Nelson et al., 2018). This evolutionary 
perspective on innovation recognizes that knowledge 
development is a problem-solving activity but also that 
not all pathways are traveled (Hung et al., 2022). That 
is, of all the possibilities that can be followed only a few 
end up being pursued, gain momentum, and become 
the basis for cumulative progress. Technical change is 
uneven in the problem space and, over time, techno-
logical solutions cluster and consolidate around spe-
cific choices (engineering/societal compromises).
Batteries have long been deployed in a variety of roles 
in networks of energy availability and use. Lately, elec-
tric generation and transmission players are increas-
ingly interested in the use of batteries for large-scale 
energy storage in order to optimize grid operations 
(IEA, 2020a). Also, the increasing deployment of high-
ly variable renewable options opens new opportunities 
to batteries in stationary applications (IEA, 2021a). 
Moreover, while for many decades batteries have been 
used as jump-start devices in conventional internal 
combustion engine vehicles, they have progressed to an 
even more central position in fully electrical approach-
es to mobility. It is expected that the use of battery-
powered electric vehicles will register an eight-fold in-
crease in the next decade (Dhakal, Min, 2020). Hence, 
batteries are increasingly present in electric transport, 
renewables-supported energy systems, smart grids, 
and new consumer electronic devices. These applica-
tions are gradually becoming woven together in new 
socio-technical systems (i.e., smart homes, sustain-
able mobility, smart cities, etc.), and the use environ-
ment shapes the technological trajectories that emerge 
over time (Malhotra et al., 2021). These forces push, 
shape, sustain, and constrain technical change. Hence, 
characterizing the key characteristics and functions 
that make batteries operative in this unfolding envi-
ronment is a relevant empirical research agenda. This 
agenda contributes to further understanding the di-
verse institutional roles, industrial dynamics, and pub-
lic policy opportunities in the contemporary economy.

Approach and Data
Patents as yardsticks 
Patents are helpful for surveying innovative efforts and 
to explore the factors behind patterns of sectoral ac-
tivity, geographic location, the evolution of the body 
of knowledge, and so on. (Bathelt et al., 2017; Naga-
oka et al., 2010; Patel, Pavitt, 2005). Despite the vast 

literature on possible approaches and methodologies 
to measure innovation, a method to unambiguously 
evaluate innovation cannot be established (Dziallas, 
Blind, 2019; McKelvey, 2014). Measuring qualitative-
ly different phenomena remains problematic (Smith, 
2006) but continues to hold promise (Mendonça et 
al., 2021). The shortcomings of patents are well known 
and include non-patenting (including the preference 
for trade secrets as forms of appropriation), differing 
propensities to patent across technologies and firm 
sizes, etc.; but, in spite of these drawbacks, they remain 
useful for understanding the evolution of medium-
high tech industrial artefacts (Mendonça et al., 2019). 
Therefore, using patents as an indicator is a matter of 
compromise, judgment, and the management of meth-
odological trade-offs. Limitations of this indicator can 
be kept in check if the filings refer to more clearly de-
limited technologies if they are high in volume and 
coming from distributed places. When considering 
which batteries are concerned, it surfaces that not only 
are the numbers very robust (for most technological 
variants) and growing above general patenting activ-
ity (especially during the 2010s), but also that battery 
patents account for nearly 90% of all electrical energy 
storage (IEA, EPO, 2020).
Patents are a by-product of dynamic economic activity, 
providing the holder with a monopoly in the territory 
covered by the patent for a certain period. It also rep-
resents an exclusive ticket to technology markets, that 
is to say, it is an intangible asset that can be transacted 
commercially and also waged as a resource in litigation 
battles. Another point to bear in mind is that the eco-
nomic significance of patents varies immensely; it is 
contingent upon a number of non-technology-related 
factors such as the country (different patenting poli-
cies and operational rules in each patent office regard-
ing patentability thresholds) and industry (mainly due 
to the knowledge-based specificities and respective 
sectoral competitive regimes). In what this paper is 
concerned, patent applications are the chosen inno-
vation indicator since they have substantive informa-
tional value regarding advances along the technologi-
cal frontier and remain unique appropriability tools 
in medium-high and high-tech innovative industries, 
including when emerging technologies which are criti-
cal for sustainability are concerned (Leiponen, 2014; 
Mendonça et al., 2021). 

Empirical evidence
The source for this study is the Global Patent Index 
(GPI), a source curated by the European Patent Of-
fice (EPO), allowing for the retrieval of thousands of 
entries per search while providing a format amenable 
to immediate statistical representation. Besides the 
quality and quantity of the data, the practical aspects 
of data handling are of great importance in empirical 
patent analysis. 
In this study, we used the International Patent Classifi-
cation (IPC) system. The IPC is composed of a coding 
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of the exploration of the battery knowledge space with-
out regard to the prospective economic value of the 
invention (Tahmooresnejad, Beaudry, 2019). Studies 
based on patent families are known to exclude many 
inventions (Criscuolo, 2006). In our case this could 
lead to losing less salient trends, such as the interac-
tions between technologies or changes in innovation 
types. Furthermore, the fact that our study and the 
already mentioned IEA & EPO (2020) report both 
identify similar general trends in battery innovation is 
reassuring regarding the validity of our approach. Pat-
terns are also corroborated by the results of Malhotra 
et al. (2021), who focuses on a narrower specification 
of batteries for a longer time using a different indicator 
construct. For a complementary study see (Metzger et 
al., 2023) with different patent evidence but corrobo-
rating results.

Technology identification
Electric batteries can be found in the IPC subclass 
H01M, which assembles patents related to the direct 
conversion of chemical energy into electricity. Three 
groups of the subclass H01M represent the different 
components of a battery system – electrodes, second-
ary cells, and non-active parts (Table 1). 
To extract patent applications that refer to only one bat-
tery component, the database was searched for “NAP 
only” (for non-active parts), “Electr only” (for elec-
trodes) and “SC only” (for secondary cells). The multi-
component patent applications were collected using 
the following queries: “Non-active parts + Electrodes”, 

“Non-active parts + Secondary cells”, “Electrodes + 
Secondary cells”, and “Non-active parts + Electrodes + 
Secondary cells”. The ensemble named “Batteries all” 
was obtained by adding results from all these queries. 

scheme with a tree structure that becomes more specif-
ic as we descend in the hierarchy. The order of this hi-
erarchy is section, class, subclass, group, and subgroup. 
A patent may cover several classification codes involv-
ing very different technological categories belonging 
to different industries, i.e., different sub-groups in dis-
tinct sections. Although it might be argued that this is 
a weakness of the patent indicator, it can translate into 
valuable information as it reveals patterns of multidi-
mensionality of a given technology which, as the cur-
rent analysis will leverage, can be highly beneficial for 
the purposes of analysis. In particular, a given patent 
that was allocated to different categories can be taken 
to be more combinatorial (in the classic Schumpeteri-
an sense of innovation as a “new combination”) rela-
tive to others. 
The time elapsed between the patent application and 
its publication can range from one year to a year and 
a half. Thus, patents published in one particular year 
were submitted about two years before. From here on, 
we will consider the date of publication as the refer-
ence one but keeping these data features in mind. Like-
wise, it is considered that at the time of extraction, the 
database was already consolidated since the patents 
published between 2005 and 2019 were extracted dur-
ing December 2020.
In this study, a choice was made to use as database pat-
ent applications regardless of the patent office where 
these were filled, instead of narrowing the database 
to a single patent office (Lee, Lee, 2013) or a limited 
group of patent offices (Kim, Lee, 2015). Our aim is 
not to measure the value of patents, for which other 
approaches would be preferable, such as the use of pat-
ent families (Martínez, 2011), but to identify the main 
developments and technological trajectories in terms 

Table 1. Patent Classification for Battery Components, IBC-based

Groups Contents
Non-active parts

H01M 2 – constructional 
details, or manufacturing 
process, of the non-active 
parts

Technical matter regarding casing, wrapping, or covering the cell, connectors, sealing materials, separators, 
electrolyte containers, shock absorbers, etc.

Electrodes
H01M 4 — electrodes Advances related to electrode manufacturing, specific electrodes and electrodes materials, which are key 

battery components in terms of capacity, power and energy density (Mei et al., 2019).
Secondary cells

H01M 10 – secondary 
cells; manufacture thereof

General manufacture details of the cell, electrolytes, accumulators, power tools, cooling mechanisms  
and so on.

Charging
H02J 3/32 Subclass H02J contains patents for circuit arrangements or systems for supplying or distributing electric 

power and systems for electric energy storage. Group H02J3 includes circuit arrangements for AC mains 
and distribution networks, while the subgroup H02J3/32 refers to arrangements for balancing the network 
load using batteries for energy storage.

H02J 7 Group H02J7 contains the patents associated with circuit arrangements for charging or depolarising 
batteries, or for supplying load from batteries.

B60L 53 Subclass B60L contains applications related to the driving force of electrically propelled vehicles. Group 
B60L53 includes batteries’ charging methods, specially adapted for electrical vehicles and charging stations.

H01M10/44 Applications of secondary cells charging or discharging methods.
Source: authors.
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The extraction method allowed all the patent applica-
tions to be separated according to the key-component 
topology, without data duplication.
During data collection, to avoid the inclusion of pat-
ents that are not related to secondary batteries, we 
made sure to exclude the subclasses of primary cells 
(H01M 6), fuel cells (H01M 8), hybrid cells (H01M 
12), as well as of electrochemical current generators 
(H01M 14), and combinations of electrochemical gen-
erators (H01M 16). In this way, the collected evidence 
is exclusively devoted to the battery system construc-
tion set-up or to electrochemical storage in general. We 
used Boolean operators in the search protocol to ex-
clude the aforementioned groups. Whenever possible, 
the queries were made based on the IPC classifications 
(classes, subclasses, groups, and subgroups). In the re-
maining cases, and for the sake of completeness, the 
queries were based on the presence of specific words 
in patent title/abstract. The reason for this choice was 
that IPC codes point directly to the technical field cov-
ered by the application, being more reliable than the 
appearance in the patent title/abstract of words like 

“battery” or “cell”. 
To analyze battery-charging technologies, we cre-
ated a further search query with three groups that do 
not belong to the subclass H01M: H02J 3/32, H02J7 
and B60L53 (see Table 1). The search query related 
to battery cooling3 uses the expressions H01M10/60 
or H01M10/443 or H01M10/486 or H01M50375 or 
H01M50/581 that include all the groups related to bat-
tery cooling or thermal management.
We made new queries to study the different battery 
technologies where the key battery component groups 
(H01M 2, H01M 4, H01M 10) were cross-checked 
with keywords from the patent front page, identify-
ing the different batteries technologies. For instance, 
to identify lead-acid batteries patents, the keywords 

“lead-acid or “VRLA” (Valve Regulated Lead Acid) or 
“SLA” (Sealed Lead Acid) or “lead acc” (Lead accumu-
lators) were introduced in the search queries. Since 
some of the emerging battery technologies analyzed 
do not have an IPC code, no specific battery-type IPC 
code was used in order to avoid a technology bias. 
We also made a specific search query for flow battery 
patents. Since flow batteries belong to the subgroup 
H01M 8/18, which is within the fuel cell hierarchy, we 
performed a survey including the H01M 8 group and 
adequate keywords (see Appendix A). In the last sev-
eral years solid-state batteries have been gaining a lot 
of attention. These batteries use solid electrodes and 
solid electrolytes, which can be made of several differ-
ent materials. In fact, this technology branch overlaps 
with a few of the technologies previously mentioned. 
The search query on solid state batteries was made by 

crossing the key battery component groups4 with the 
keyword “solid state”.
To inspect the interactions between patenting in bat-
teries and photovoltaic/wind technologies, new search 
queries were implemented, inspecting the intersec-
tions between any IPC battery group and the groups 
related to PV/wind energies. To analyze the interac-
tions of batteries with electric mobility, battery pat-
ents groups were cross-inspected with groups B60L 
11 and B60L 505 associated with the power supply 
within electric vehicle systems. Finally, to examine the 
interactions of battery charging/supplying with other 
technologies, the charging/supplying load query was 
crossed with the wind/PV energy and the electric ve-
hicle group codes. For this goal, some keywords were 
added to the search query. Moreover, the subgroup 
H02J 7/35, related to charging batteries with PV en-
ergy, was included in the charging battery-PV search. 
The details of the methodological protocols are further 
described in the Appendix A.

Innovation categorization
Possibly the most classic breakdown between types of 
innovation is the product innovation concept, i.e., the 
introduction of a new or significantly developed out-
put in the economic system, and the process innovation 
concept, i.e., a novel or more sophisticated method of 
production or distribution (Fagerberg, 2004). Product 
innovations refer to outputs, whereas process innova-
tions refer to the linkage between inputs and outputs. 
Recently Domnich (2022) made a survey of empirical 
studies on the impact on productivity with a specific 
emphasis on product and process innovation. In the 
case of batteries, an example of product innovation 
may be the refining of the battery design and an exam-
ple of process innovation may be related to assemblage 
features.
Innovations can also be characterized by impact, being 
classified as incremental when representing smooth 
elaborations on prior set-ups of the technology or 
radical when a breakthrough causes a discontinuity 
with the established knowledge bases (Dodgson, 2008). 
Radical innovations combine more and unconnected 
knowledge domains, making them more encompass-
ing and riskier than technologies that work in just one 
domain, thus providing a platform for new technologi-
cal trajectories (Hesse, Fornahl, 2020). In the case of 
batteries, this may imply for example a new architec-
ture of the cell. This paper adopts these criteria in or-
der to distinguish between varieties of advancements 
in state-of-the-art battery technologies.
The extant literature does not provide unequivocal 
guidance on how to operationalize the product/pro-
cess and radical/incremental concepts, and much lies 
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in the hands of analysts facing the particular empirical 
materials and research goals (Dziallas, Blind, 2019; Ka-
tila, 2000). Based on the patent content and classifica-
tions (title, claims, descriptions, IPC categories, etc.), 
this study distinguishes between product and process 
innovations as well as radical and incremental inno-
vations by considering a number of methodological 
options. Considering that there are several IPC sub-
groups related to the manufacture of battery compo-
nents, a patent application containing at least one of 
these subgroups is considered a process innovation, 
and the applications not containing any of them are 
treated as product innovations. To characterize inno-
vation impact, we posit that innovation is incremental 
if there is innovation in just one battery dimension (i.e., 
Electrodes, Non-active parts, and Secondary Cells) 
and radical if there are advances in at least two bat-
tery dimensions, proxying for the possible step-jumps 
stemming from connecting previously unrelated char-
acteristics (Castaldi et al., 2015).
Our study goes through more than 700,000 patents 
applications for the period 2005–2019. The analysis of 
this database provides an insight into the most signifi-
cant aspects of battery breakthroughs and innovation 
protagonists. The systematic interactions with renew-
able energies and mobility technologies are also ana-
lyzed. Based on the previously established definitions 
of incremental/radical and product/process innova-
tion, the most important innovation types are weighed 
in. A number of distinct trends immediately emerge.

Results
Leading patent applicants
Figure 1(a) presents the leading 25 battery corporate 
applicants of the period 2005–2019. This list of heavy-
duty applicants is almost entirely composed of large 
companies. Thirteen of these companies are Japanese, 
four are South Korean, three - Chinese, two - German, 
and two are from the US. The only non-corporate en-
tity (a public research lab) that appears on this list is 
French, the Centre Energie Atomique (CEA). 
The striking performance of Far Eastern players is in 
line with the results of IEA & EPO (2020). The nota-
ble role played by Japanese and South Korean corpo-
rations in patent applications may be justified, on the 
one hand, by the great importance of the higher-tech/
export-oriented sectors in these countries in areas that 
are heavily dependent on batteries, such as consumer 
electronics and automobiles. On the other hand, it is 
widely recognized that the ambitious R&D policies, 
anchored on their own industries’ priorities, developed 
by Japan and South Korea over the years with respect to 

“clean energy” technologies, including batteries since 
the 1990s, are strongly implicated in these technologi-

cal achievements (IEA, 2008; Jeong, Mah, 2022). It is 
worth mentioning, by contrast, the example of Germa-
ny, that despite its ambitious energy transition strategy 
expressed in its successive energy research programs, 
in the absence of strong battery-related industrial in-
terests, energy storage and rechargeable batteries were 
only established as research priorities in 20116.
In Figure 1(b) it can be observed that the main in-
novation national players in batteries in the period 
2005–2019 are Japan (JP) and South Korea (SK), fol-
lowed by the United States (USA), Germany (GER), 
and China (CN). It is worth mentioning that when 
focusing on the patents published in the last five years, 
the rapid rise in patenting by large Chinese companies 
(IEA, EPO, 2020) is striking, a trend that if maintained 
will likely introduce significant changes in the leader-
ship of battery innovation. Overall, the vibrant perfor-
mance of the “Global East” appears largely attributable 
to deliberate national strategies for the development of 
clean energy technologies (Tan, 2010; Malhotra et al., 
2021; May et al., 2018). The expansion rates of battery-
related productive knowledge show that effective pol-
icy support is within reach as way to allow for greater 
global ambitions (IEA, 2022). 

Main battery development pathways
Figure 2 displays the patenting trends across battery 
types (log-scale), and at least four empirical regulari-
ties can be outlined. First, Li-ion batteries are hegem-
onic throughout the field of batteries, sustaining an av-
erage annual growth rate of 17%, coming to represent 
more than three-quarters of all patents published in 
the period 2005–2019. The high inventive activity re-
lated to lithium-ion (Li-ion) technology can be attrib-
uted to its deployment in very different uses. Different 
applications have different performance criteria, but 
this technology has provided effective solutions (for 
mobility and stationary purposes) at declining rela-
tive prices (IEA, EPO, 2020, pp. 46–48). Second, there 
has also been resilient performance by the lead-acid 
(Pb-acid) type of batteries, a mature technology that 
maintains a steady innovation flow and a relevant role 
on the growing market of stationary storage applica-
tions (May et al., 2018). Third, some evidence of struc-
tural change can be identified: two battery approaches, 
redox-flow and lithium-sulfur (Li-S), took off around 
2010 and have achieved growth rates of over 30% in 
the remainder of the period under analysis. Finally, a 
third kind of regularity can be noticed, the numbers 
for lithium-air (Li-air) and sodium-sulfur (Na-S) bat-
teries are still marginal even if these two technologies 
have been pointed out as very promising, particularly 
Na-S having been suggested as valid option for grid 
storage applications (Hirsh et al., 2020). It must be 
highlighted that more than three quarters of battery-

6  https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/6-energieforschungsprogramm-der-bundesregierung.html, accessed 16.01.2023.
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Source: authors.
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related patents do not mention a specific technology 
and correspond to technological developments on spe-
cific battery components that can be inserted into bat-
teries of very different technologies.
The pursuit of battery energy density and safety has 
boosted the interest in approaches based on solid elec-
trolytes (Kim et al., 2015). Although solid state batter-
ies are not a technology branch per se, but a specific 
construction form that intercepts several technologies, 
it is worth mentioning the rapid growth rate of patents 
in the last several years (since 2011 over 30% year-on-
year). In 2019 the number patents associated with solid 
state batteries was already higher than for all non-lithi-
um-ion battery technologies, a sign that this solution is 
becoming more important and emerging as a possible 
future trajectory.

Overall dynamics and key component technologies
The dynamics of battery patent applications over time 
is presented in Figure 3. The aggregate applications, 
i.e., “Batteries all” (read in the secondary axis), rise 
throughout, increasing five-fold through the entire pe-
riod. This pattern is in line with the conclusions of a 
recent report by (IEA, EPO, 2020, p. 44) stating that 
the technical developments in batteries have signaled 

“a burst of innovation in this area” as trends have been 
faster than in general patenting. Moreover, there seems 
to be a chronology during this period: an early stage 
of growth (up to the early 2010s), then a moment of 
stagnation (until the mid-2010s), and a recovery until 
the end of the decade. 
By breaking down battery dimensions and compo-
nents, i.e., by highlighting particular elements of a bat-
tery set-up, we come to see that the “Secondary cells 
only” displays the most vibrant growth, followed but 
the “Non-active parts only”, “Electrodes+SC”, and 

“Non-active parts+SC”. This fact comes across as a clear 
sign of strong investment in these specific dimensions 
of battery technology. The technology segment labeled 

“Electr only” did not recover from its relative stagna-
tion and clearly diverged from the other single compo-
nent technology groupings. 
Among the multi-component patent applications, the 
packages “Elect+SC” and “NAP+SC” stand out from 
the rest, maintaining consistent growth over the ana-
lyzed period. In recent years these “packages” (i.e. 
specific configurations of battery components) even 
surpassed the “Electr only” and reached the level of 

“NAC only”, suggesting a growing trend to submit pat-
ents covering more than one technological dimension. 
Conversely, “NAP+Elect” and “NAP+Elect+SC” pack-
ages had a very low number of patent applications in 
the period 2004–2019, showing that is not common 
to submit patents that address simultaneously non-
active parts and electrodes (either with secondary cells  
or not). 
Table 2 presents the number of patents with reference 
to the main battery components. Electrodes are by far 
the most innovative component of battery technol-
ogy and is an indication that improving the battery 
performance is the most important driving force for 
innovation. Other significant components are Elec-
trolytes, Cell Housing, and Separators. While patent-
ing in Electrodes and Electrolytes is associated with 
the quest to increase battery capacity, particularly its 
energy density, the growing number of patents in cell 
housing and separators can be attributed to the need 
to adapt batteries to a growing number of different ap-
plications, that range from small consumer electronic 
devices (cell phones, tablets, etc.) to several different 
electronic mobility solutions (ex: cars, bikes, scoot-
ers, or unmanned aerial vehicles) (Golembiewski et al., 
2015; IEA, EPO, 2020).

Battery charging and cooling
Figure 4 presents the upward trend of patents associ-
ated with battery charging/supplying load technolo-
gies (H02J3/32 and H02J7). It can be observed that 

Figure 1. Top 25 Key Patent Applicants and Top 10 Countries 
with the Most Battery-Related Patent Applications (2005–2019)

a) patent applicants    b) countries
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since 2009, the number of applications has been rising 
steeply, sporting an average annual growth rate of 19%. 
The substantial increase in solutions related to charg-
ing/supplying load technologies can be attributed to 
the required adaptation of these interface capabilities 
in the context of new applications. In particular, it is 
acknowledged that the need to deal with the emerging 
problems associated with the rising use of batteries is 
strongly related to the pressure to develop fast-charg-
ing technologies for electric mobility (Tomaszewska et 
al., 2019) and to adapt the battery charging/discharg-
ing to intermittent energy sources (Zhao et al., 2018).
Due to its increasing energy density and the growing 
use of fast charging technologies, heat management in 

batteries has become a pressing issue, particularly in 
electric vehicle applications (Lu et al., 2020). Conse-
quently, the number of patents with references to bat-
tery cooling technologies has increased steeply regis-
tering an average growth rate of 35% per year in the 
period 2005–2019, reaching over 8,000 patents in 2019, 
which is higher than for all non-electrode components.

Interactions with other clean technologies
One of the objectives of this study is to explore the ex-
istence of synergies of batteries with other “clean” tech-
nologies, namely renewable energies and electric vehi-
cle technologies. The joint patenting between batteries/
charging and wind energy is found to be unremarkable. 
In fact, is unlikely that this outlook will change in the 
near future since hydroelectric and CAES systems are 
more cost-effective choices to store wind energy than 
batteries (Barnhart et al., 2013; Ding et al., 2012). But, 
on the other hand, relevant interactions are found be-
tween battery technologies and other upstream (i.e., 
solar PV) and downstream developments (i.e., electri-
cal vehicles), especially when charging is considered.
Figure 5 shows that the number of patents covering 
battery charging and PV technologies has been in-
creasing consistently over the past decade, accounting 
for more than 20% of patenting in battery charging in 
recent years, a sign that the specific needs of associat-
ing batteries with PV systems have become a “focusing 
device” for battery innovation. It can also be observed 
that the evolution of the overlap between patenting in 
battery charging and the EV applications is likewise re-
markable: by 2019 joint patenting accounted for more 
than a quarter of the total number of patents in battery 
loading. 

Figure 2. Patent Applications for the Main Battery 
Varieties in the Period 2005–2019 (log-scale)

Source: authors.

Source: authors.

Figure 3. Patenting in Battery Technology Combinations (2005–2019)

Notе: The series «Batteries all» reads in the yy axis on the right.
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General battery innovation patterns
A final analysis of innovation trajectories in this study 
is implemented by deploying the concepts of incre-
mental/radical innovation and product/process inno-
vation. Figure 6 shows the dynamics of different types 
of innovation over time. Besides the steady growth in 
patenting for all types of innovation (with the excep-
tion of incremental innovation in the 2014–2016 pe-
riod), Figure 6 points out that incremental innovation 
is more common, as expected, but that evidence of an 
increase in the share of “radicalness” can be observed 
in later years. Moreover, the sharp rise in the number 
of incremental innovation patents and a subsequent 
decrease between 2014–2016 correlates well with the 
trend of “Electrodes only” patenting (Figure 3), sug-
gesting that the temporary increase in incremental 
innovation patents was mainly driven by the boost in 
electrode innovation that reached its peak in 2014, af-
ter which a burst of patenting in multiple technology 
battery packages promoted an uptake of radical in-
novation. Most battery patents apparently cover prod-
ucts (artefacts or systems) and not so much processes 
(manufacturing assemblages and methods). It must be 
mentioned that, although all the innovation types wit-
nessed a very significant increase in the total number 
of patent applications in the period 2005–2019, the 
shares of incremental/radical and product/process in-
novations remained mostly stable. 
In Table 3 the relative shares of different types of in-
novation are presented. During the period 2005–2019, 
62% of the battery patenting represents incremental 
innovation and 38% radical innovation, while 74% of 
the patents published correspond to product innova-
tion and the remaining 26% represent process innova-
tion. Thus, product innovation patents tend to be in-
cremental, while process innovation patents are some-
what more radical.

Innovation type by technology
To further the analysis, the distribution of patents by 
the different innovation types was put into perspective 
by focusing on the four technologies with the highest 
innovation activity: Li-ion, Pb-acid, Li-S, and Flow 
batteries. In Figure 7 the variation in the period 2004–
2019 of incremental and radical innovations for these 
four technologies is presented.

For Li-ion batteries, incremental and radical innova-
tions were split almost evenly within the total number 
of patents. But different trends can be observed over 
time: after a strong increase of incremental innovation 
until 2014 (which correlates well with the growth of 
electrodes only and non-active parts only, see Figure 
3), when it reached two-thirds of all the patents, it fell 
and was overtaken by radical innovation. It is worth 
noting the burst of radical innovation in mature Li-
ion technologies, which is most likely associated with 
the need to adapt the technology to new applications. 
Two-thirds of Pb-acid patents represent incremen-
tal innovation, while the remainder corresponds to 
radical innovation. Such a share distribution, which 
remained stable over time, is quite expected for a ma-
ture technological technology like Pb-acid. For the 
emergent Li-S, two-thirds of patents represent radical 
innovations. The explosion of radical innovation pat-
ents occurred after 2014 when this type of innovation 
took the lead for Li-S technology. Finally, for the emer-
gent flow-batteries, incremental innovation represents 
three-quarters of all the patents, and both innovation 
types maintain steady growth rates. The particular na-
ture of flow-batteries (which is very different from the 
remaining battery technologies), and the fact that its 
applications are very focused on grid storage, might 
contribute to a concentration of the innovation effort 
in the improvement of battery performance, and not 
so much in non-active parts, such as separators, cell 
housing, etc., which can justify the trend to mainly 
patent incremental innovations.
It must be recalled that, as already mentioned, three-
quarters of all patents make no mention of a specific 
battery technology, most of these patents represent in-
novation in a particular battery component, contribut-
ing to the overall “incremental innovation” of battery 
technologies, which represents 62% of all the patents.
In Figure 8, the variation of product and process innova-
tion for the four main battery technologies is presented. 
One can observe that for the four technologies analyzed 
most of the patents correspond to product innovation (a 
trend corroborated by Malhotra et al., 2021). 

Table 2. Number of Patents with Reference  
to the Main Battery Components  

in the Period (2005–2019)

Component Number of patents
Electrodes 1.7×105

Electrolytes 4.8×104

Cell housing 5.2×104

Separators 3.3×104

Source: authors.

Figure 4. Patenting Activity in Charging/ 
Supplying Loads from Batteries

Source: authors.
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For the Li-ion technology, one third of patents repre-
sent process innovations. Both product and process 
innovations increase the number of patents over time 
and the relative shares are kept more or less stable. One 
third of the Pb-acid related patents represent process 
innovations, and although product and process inno-
vations increase patenting over time, from to 2005 to 
2019, the share of process innovations increased from 
28% to 42%. One third of the Li-S technology patents 
represents process innovations, but product innova-
tions have significantly increased its share in recent 
years reaching 75% in 2019. Finally, more than 90% 
of the patents on flow-battery technologies represent 
product innovations. In fact, while product innova-
tions have experienced a significant growth in the 
analyzed period, patenting in process innovations is 
still modest. It is noteworthy that while for Li-ion and 
Pb-acid technologies, the share of process innovations 
tends to increase over time, the opposite trend is ob-
served for Li-S and flow-battery technologies – such 
patterns are consistent with the maturity level of these 
technologies.
Overall, battery innovations are developing strongly. 
Large East Asian consumer electronics and automobile 

companies dominate the list of main patent applicants. 
Electrodes are found to be the most dynamic of battery 
components. Besides the more mature technologies 
like lithium-ion and lead-acid, the battery technolo-
gies that arise as the most promising in terms of inno-
vation are lithium-sulfur and flow batteries. Synergies 
of battery technologies with upstream (i.e., energy pro-
duction) and downstream technologies (i.e., energy 
use) occur mainly through battery charging/discharg-
ing. Incremental product innovations have been the 
dominant technological trajectory, but radical product 
innovations account steadily for nearly a quarter of the 
patents published in the period 2005–2019. All-in-all, 
by drawing on ample and detailed patent evidence on 
the rate and direction of technical change across the 
battery innovation ecosystem, this study presents find-
ings that are of use to both private and public sectors, 
including market-oriented investors and independent 
regulators. 

Conclusions
Over the last several decades, the concern with the role 
of new technology in pre-empting and mitigating cli-
mate change has emerged at top of the policy agenda 
across many national and international constituencies, 
largely driven by the synergies between the digital and 
sustainability challenges. The assumption of this paper 
is that electricity harnessing, storage, and dispatching 
has a pivotal role to play in the socio-technical transi-
tion toward a cleaner and more connected mode of in-
novation, production, distribution, and consumption. 
The theoretical baseline of this paper is founded on the 

Figure 5. Evolution of the Joint Patenting  
of Battery Technologies with Electric  

Vehicle (EV)and Photovoltaic Energy (PV)

Source: authors.

Figure 6. Evolution Overtime of Innovation by Type

Source: authors.

Table 3. Share of Battery Patents in the Period  
2005–2019 by Innovation Type (%)

Innovation type Degree of novelty Total Prod/Proc
Incremental Radical

Product 51 23 74
Process 11 15 26
Total Inc/Rad 62 38 100
Source: authors.
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Figure 7. Dynamics of Incremental and Radical Innovation for the Four Main Batteries Technologies

Source: authors.

understanding that innovation is an uneven, uncertain, 
and evolutionary phenomenon. By focusing on batter-
ies and adopting a long-term perspective in what has 
become a rapidly moving field, we stress how func-
tionalities and applications interact over time in what 
become technological trajectories. The large patent da-
tabase assembled yields a set of results that correspond 
to a general picture in which battery breakthroughs 
have been gaining momentum at an irregular tempo, 
but consistently across a range of specific technology 
variants. These results may also provide some guid-
ing principles for the development and investment in 
batteries and complementary low carbon energy tech-
nologies. 
Patent evidence for 2005–2019 shows that innova-
tion in battery technologies is increasing strongly in 
a variety of technological aspects. The countries that 
most contribute to this increase are Japan, South Ko-
rea, USA, Germany, and China. Lithium-ion batteries 
are currently the main driving force of battery innova-
tion, framing the most significant trends of the field. 
Lithium-sulfur and flow batteries assert themselves as 
the most promising emerging technologies, and their 
development should be attentively followed in the next 
several years. Lately, solid state batteries have been 
gaining a lot of attention and patent data for the period 
2005–2019, indicating it to be a promising technologi-
cal direction. Battery implementation challenges are 
highly sector-specific and define innovation pathways 
that are relevant for stakeholders engaged in decarbon-
izing strategies. The quest to increase battery capacity 
contributes to the electrodes being the most dynamic 

battery component. The need to increase energy densi-
ty and reduce the battery charging time has boosted re-
search on innovative battery cooling technologies. The 
specific features of energy production technologies, 
like PV, and energy usages like the electric car, have 
contributed to the rise of battery charging/supplying 
load to the most innovative technological component. 
In fact, the interactions of battery charging with these 
two technologies have become empirically notice-
able. The overall evolution of the battery innovation 
typologies shows a steady growth of product, process, 
incremental, and radical innovation types, with stable 
shares of product/process and incremental/radical in-
novations.  Incremental/product innovation tends to 
be the main mode of advancement overall during the 
past two decades. 
The constructive engagement with science and tech-
nology processes that address major global societal 
challenges reflect the realm of possibilities for fur-
ther progress. Following from this observation, it is 
clear that energy-relevant institutions (policy-setting 
entities, regulatory authorities, standard bodies, etc.) 
should bring an explicit dynamic view into their sec-
toral development agendas. Energy transformation is 
contingent upon continuous, sustained, and strategic 
commitments to innovation. Progress in storage tech-
nologies requires a diversity of sources of knowledge, 
experimentation avenues, and forceful investments. 
This unfolding set of learning paths reveals pointers 
that can guide public and private decision-makers, in 
what is a dynamic and shifting technological frontier. 
Reports by national and international agencies could 
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benefit, for instance, from systematically following re-
search and innovation indicators. since being able to 
hold a long-view horizon is an urgent task in times of 
climate shocks and systematic scarcity. 
One limitation of a patent-based study like ours is that 
patents detect more easily innovations put forward by 
large companies than by smaller ones. Also, by look-
ing at individual patents, one cannot perceive unam-
biguously if these belong to an ensemble of patents that 
jointly protect a certain innovative package (meaning 
expert panels could be mobilized in future studies to 
add qualitative appraisals to science and technology 
indicators in order to provide more holistic assess-
ments). 
Finally, the analysis of the geographical distribution of 
patent applications suggests that countries that pushed 
through ambitious, consistent, and long-term R&D 
programs symbiotically coordinated with large indus-
trial players on clean energy technologies, and par-

Figure 8. Evolution Overtime of Product and Process Innovation

Source: authors.

ticularly within the battery field, such as Japan, South 
Korea, and more recently China, have obtained an 
innovation edge that places them in a very favorable 
position in the energy transition process. These exam-
ples are a reminder that purposeful change is possible 
across the world.
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Appendix A. Мethodological protocols of the study

Battery components groups

Battery system 
component Search query

Non-active parts (((IPC = H01M2+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M4+ OR H01M10+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Electrodes (((IPC = H01M4+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M2+ OR H01M10+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Secondary cells (((IPC = H01M10+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M2+ OR H01M4+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Non-active parts and 
electrodes

(((IPC = H01M2+ and H01M4+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M10+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Non-active parts and 
secondary cells

(((IPC = H01M2+ and H01M10+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M4+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Electrodes and 
secondary cells

(((IPC = H01M4+ and H01M10+) and (PUD [20050101, 20191231])) AND NOT (IPC = H01M2+ or 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Non-active parts, 
electrodes and 
secondary cells

(((IPC = H01M2+ and H01M4+ and H01M10+) and (PUD [20050101, 20191231])) AND NOT (IPC = 
H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR H01M16+ OR H01M18+))

Charging (IPC = H02J7 or H02J3/32 or B60L53 or H01M10/44) AND (PUD [20050101, 20191231])
Cooling (((IPC = (H01M00106* or H01M0010443* or H01M0010486 or H01M0050375 or H01M0050581)) and 

(PUD [20050101, 20191231])) AND NOT (IPC = H01M6 OR H01M8 OR H01M12 OR H01M14 OR 
H01M16))
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Types of battery technologies

Battery type Search query
Lead-acid (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = (VRLA OR 

SLA OR lead +2w acid OR lead +2w acc+)) AND NOT (IPC = H01M6 OR H01M8 OR H01M12 OR H01M14 
OR H01M16 OR H01M18))

Lithium-air (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = (Lithium +2w 
air OR Li +2w air OR lithium +2w oxygen OR LiO2 OR Li +2w O2)) AND NOT (IPC = H01M6 or H01M8 
OR H01M12 OR H01M14 OR H01m16 OR H01M18))

Lithium-ion (((IPC = H01M2+ OR H01M4+ OR H01M10+) and (PUD [20050101, 20191231])) AND (ABEN = (Li +2w 
ion OR LiFePO4 OR LiPo OR Li +2w Poly OR lithium +2w ion OR Lithium +2w cobalt OR Lithium +2w 
manganese OR Lithium +2w phosphate OR Lithium +2w iron +2w phosphate OR Lithium +2w titanate 
OR Lithium +2w Polymer)) AND NOT (IPC = H01M6+ OR H01M8+ OR H01M12+ OR H01M14+ OR 
H01M16+ OR H01M18+))

Lithium-sulfur (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = (li +2w S 
OR lithium +2w sulphur OR lithium +2w sulfur)) AND NOT (IPC = H01M6 or H01M8 OR H01M12 OR 
H01M14 OR H01m16 OR H01M18))

Magnesium-ion (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = (magnesium 
+1w ion OR Mg +1w ion)) AND NOT (IPC = H01M6 OR H01M8 OR H01M12 OR H01M14 OR H01M16 
OR H01M18))

Nickel-cadmium (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = nickel +2w 
cadmium OR Ni +2W cd OR Nicd) AND NOT (IPC = H01M6 OR H01M8 OR H01M12 OR H01M14 OR 
H01M16 OR H01M18))

Flow (((IPC = H01M2 OR H01M4 OR H01M8 OR H01M10) and ( PUD [20050101, 20191231])) AND (ABEN 
= (Flow +2w batter* OR Redox +2w flow +2w batter* OR RFB OR Vanadium +2w redox +2w batter* OR 
Vanadium +2w redox +2w flow OR VRB OR Zinc +2w bromine +2w flow OR Zinc +2w bromine +2w batter* 
OR ZNBR OR Iron +2w chromium +2w flow OR iron +2w chromium +2w batter*)) AND NOT (IPC = 
H01M6 OR H01M12 OR H01M14 OR H01M16 OR H01M18))

Sodium-sulfur (((IPC = H01M2 OR H01M4 OR H01M10) and (PUD [20050101, 20191231])) AND (ABEN = (sodium +2w 
sulfur OR sodium +2w sulphur OR Na +0w S)) AND NOT (IPC = H01M6 OR H01M8 OR H01M12 OR 
H01M14 OR H01M16 OR H01M18))

Solid state batteries ((IPC = H01M2 or h01m4 or h01m10 or H01M50) and ((ABEN = solid +2w state)) AND (PUD [20050101, 
20191231]))

Interactions with other technologies

Interaction Search query
Batteries and PV (IPC = (h01m10+) and (H02S+ or H01L 27/142 or H01L31/00 or H01L31/02 or H01L31/024 or 

H01L31/04 or H01G9/20 or H02S10/ or H01L31/042 or G05F1/67 or F21S9/03 or H01G9/20 or 
H01M14 or H01L31/0525 or B60K16/00 or B60L8)) and (PUD [20050101, 20191231]) AND not (IPC = 
H01M6 or H01M8)

Batteries and Wind (IPC = (h01m10+) and (F03D+)) and (PUD [20050101, 20191231]) AND not (IPC = H01M6 or 
H01M8)

Batteries and Electric Vehicles ((IPC = H01M2 or h01m4 or h01m10) and ((IPC = B60L50 or B60L11) or (ABEN = electric +2w vehicle 
or ev or electric +2w mobility)) AND (PUD [20050101, 20191231]))

Charging Electric Vehicles 
Batteries

(((IPC = H02J7 or H02J3/32 or H01M10/44) and ((IPC = B60L11 or B60L50) or (ABEN = electric +2w 
vehicle or ev or electric +2w mobility))) or IPC = B60L53) AND (PUD [20050101, 20191231])

Charging Batteries with PV (IPC = ((H02J7 or H02J3/32 or H01M10/44) and (H02S+ or H01L 27/142 or H01L31/00 or H01L31/02 
or H01L31/024 or H01L31/04 or H01G9/20 or H02S10/ or H01L31/042 or G05F1/67 or F21S9/03 or 
H01G9/20 or H01M14 or H01L31/0525 or B60K16/00 or B60L8)) or H02J7/35) AND (PUD [20050101, 
20191231])

Battery process innovation IPC sub-groups 

IPC Code Process Classifications
H01M 4 – 
Electrodes

H01M 4/04, H01M 4/08, H01M 4/10, H01M 4/12, H01M 4/139, H01M 4/1391, H01M 4/13915, H01M 4/1393, 
H01M 4/1395, H01M 4/1397, H01M 4/1399, H01M 4/16, H01M 4/18, H01M 4/20, H01M4 /21, H01M 4/22, H01M 
4/23, H01M 4/26, H01M 4/28, H01M 4/29, H01M 4/30, H01M 4/82; H01M84; H01M 4/88 

H01M 10 –
Secondary 
elements

H01M 10/04, H01M 10/058, H01M 10/0583, H01M 10/0585, H01M 10/0587, H01M 10/12, H01M 10/14, H01M 
10/16, H01M 10/28, H01M 10/38 


