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Abstract

This paper considers the problem of optimal management of a fleet of freight cars by a transport 
railway operator. The solution to this problem is an optimal plan, which is a timetable for the movement 
of freight and empty railway cars, following which the transport operator will receive the maximum 
profit for the estimated period of time. This problem is reduced to the problem of linear programming 
of large dimension. Unlike the works of other authors on this topic, which mainly deal with methods 
of numerical solution of the corresponding linear programming problems, this article focuses on an 
algorithm that allows one to reduce their dimensionality. This can be achieved by excluding from 
the calculation those routes that obviously cannot be involved in the solution, or whose probability 
of participation in the final solution is estimated as extremely low. The effectiveness of the proposed 
modified algorithm was confirmed both on a model example (several stations, a short planning 
horizon) and on a real example (more than 1 000 stations, a long planning horizon). In the first case, 
there was a decrease in the dimension of the problem by 44%, while in the second – by 30 times.
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Introduction

One of the most popular modes of 
transport for cargo in the Rus-
sian Federation is rail. Publications 

devoted to railway logistics can be divided into 
the following main groups according to the 
type of tasks studied:

♦♦ railway network infrastructure design tasks;

♦♦ railway planning tasks;

♦♦ tasks of managing the fleet of locomotives 
and wagons.

In the first group, works [1–4] can be distin-
guished. The second group, in particular, is rep-
resented by the tasks of forming the timetable of 
freight trains, as well as the tasks of forming freight 
flows [5, 6]. One of the approaches to the forma-
tion of cargo traffic is presented in the works of 
Khachatryan and Beklaryan [7–16]. These arti-
cles present macroscopic dynamic models in 
which the process of organizing railway freight 
transportation is the formation of freight traffic 
based on the interaction of neighboring stations. 
These models make it possible to predict dynam-
ics of station congestion and flows arising on the 
railway network by using a given procedure for 
organizing cargo traffic. Several configurations 
of sections of the railway network are considered. 
The first one is an extended section of the railway 
line which is characterized by an infinite num-
ber of stations in both directions, and also char-
acterized by the absence of hub stations. This 
configuration of the transport network is suitable 
for describing transnational transportation (for 
example, transportation along the Trans-Siberian 
railway with a length of more than 9.000 km). 
The second configuration defines the movement 
of cargo traffic through a closed chain of stations. 
The third is characterized by a finite number of 
stations and determines the movement of cargo 
traffic between two hub stations.

The presented work is devoted to the problem 
of optimal management of a fleet of railway 
freight cars. Railway transport operators are 

faced with the task of optimal management of 
a fleet of freight cars to maximize profit. Such 
management is carried out, on the one hand, on 
the basis of wagons’ dislocation, on the other – 
on the basis of requests for the transportation 
of goods. Requests are submitted by custom-
ers. Each request specifies stations of departure 
and destination, the volume of cargo trans-
ported, expressed in wagons and the rate that 
the customer is going to pay for each wagon of 
transported cargo. In addition to the rate that 
the customers pay to the transport operator for 
the provision of wagons, they also pay to Rus-
sian Railways for the transportation of loaded 
wagons. The costs of transporting empty wag-
ons are covered by the transport operator. From 
the entire list of requests, the transport opera-
tor selects those that are most profitable for it 
to execute. Any selected requests can be com-
pleted either in full or in part. In accordance 
to dislocation of wagons and the available list 
of requests, creation of a wagon management 
plan implies preparation of a timetable for the 
movement of loaded and empty wagons, taking 
into account known time standards. Thus, the 
task is to find the optimal plan to manage the 
fleet of freight cars for a certain period of time 
(as a rule, the plan is drawn up for a month). 
In [17] a multi-commodity flow model defined 
on a space-time graph is presented, and an 
algorithm that allows reducing it to a linear 
programming problem is proposed. 

The problems with a close formulation were 
previously considered in [18, 19]. In these 
articles, the authors focus on the methods of 
numerical solution of the resulting linear pro-
gramming problem. In particular, they talk 
about the use of the column generation method 
[20, 21] and modification of this method [22, 
23], which is based on the Danzig–Wulff 
decomposition [24]. A similar problem was 
considered in an earlier article [25]. The model 
presented in this paper was developed at the 
request of one of the largest transport opera-
tors in Latin America. Its peculiarity is that 
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the freight transportation plan is drawn up tak-
ing into account the previously known sched-
ule of locomotives, whereas in this article and 
in the works [18, 19], the time of movement of 
cars on each of the routes is determined solely 
based on the standards of the Russian Railways 
(i.e., the schedule of locomotives in our case is 
unknown and it is not important for us; this is 
an internal matter of Russian Railways). 

In contrast to these works, the authors of this 
article do not focus their attention on methods 
of numerical solution of linear programming 
problems, but offer methods for construct-
ing space-time graphs that serve as the basis 
for setting both the objective function and the 
constraints of a linear programming problem 
having a smaller dimension. At the same time, 
the type of the objective function and con-
straints does not change. Thus, in this paper, 
a modification of the algorithm described in 
[17] is proposed which makes it possible to sig-
nificantly reduce the dimension of the model. 
Before proceeding to its description, let us pre-
sent the statement of the linear programming 
problem itself. To do this, the following nota-
tions are going to be introduced:

N – number of stations involved in planning;

T – planning horizon, measured in days; for 
simplicity one month is taken as the length of 
the planning horizon in this work (i.e. T = 30 
or 31);

t – the discrete parameter responsible for time 
is measured in days and takes values t = 1, 2, 
...,T;

 – (N  N)-matrix, which elements 
characterize the tariff set by Russian Railways 
for an empty run of one wagon from station i 
to station j;

 – (N  N)-matrix, which ele-
ments characterize the time (in days) of move-
ment of loaded wagons from station i to station 
j in accordance with Russian Railways stand-
ards (time is rounded to a larger integer);

 – (N  N)-matrix, which ele-
ments characterize the time (in days) of move-
ment of empty wagons from station i to station j 
in accordance with Russian Railways standards 
(time is rounded to a larger integer);

 – (N  N)-matrix, which elements 
characterize the rate specified by the customer 
in the request for transportation of one loaded 
wagon from station i to station j;

 – (N  N)-matrix, which ele-
ments characterize the number of loaded wag-
ons specified in the corresponding request for 
cargo transportation from station i to station j. 
All elements of the matrix take non-negative;

 – vector of dimension N, that 
characterizes the initial location of wagons on 
day t, the i-th element of this vector equals to 
the number of wagons that arrived at station i at 
time t  {1, ..., T }. All values of this vector take 
non-negative integer values. 

Then the above linear programming problem 
takes the form

                      	 (1)

subject to

                      (A
out

 – A
in 

)  K = S
0
,	 (2)

                              A
Q
  K  Q,	 (3)

where 

K – is a vector the first part of which is respon-
sible for freight routes, the second part corre-
sponds to empty routes, in fact this vector is a 
transportation plan; 

PC – is a vector, the first part of which is 
responsible for freight rates, the second part 
corresponds to costs for empty rates, the prod-
uct of PC T  K gives a profit that transport oper-
ator gets for planning horizon;

A
out

 – is a matrix that takes into account the 
outgoing routes from each station;
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A
in
 – is a matrix that takes into account the 

incoming routes to each station;

S
0
 – is a vector of the initial distribution of wag-

ons by stations and by time;

A
Q
 – is a matrix such that the product A

Q
  K 

shows the volume in wagons that must be exe-
cuted for each of the requests in accordance 
with the solution K;

Q – is a vector of the volume of orders (in wag-
ons) specified in the requests. 

Constraint (2) is a balance constraint, i.e. 
its implementation guarantees that in each 
period the number of cars entering the station 
will coincide with the number of cars leav-
ing. The fulfillment of constraint (3) guaran-
tees that the volume of executed cargo routes 
will not exceed the volumes specified in the 
requests.

The algorithm presented in [17] gives the 
dimension of the problem (1)–(3) equals to TN 2, 
 i.e. the number of elements in the vectors K 
and PC is 2TN 2. The dimension of the matri-
ces A

out
 and A

in
 turns out to be TN   2TN, the 

dimension of the matrix A
Q
 is N 2  2TN 2, the 

dimension of the vector S
0
 is TN, the dimen-

sion of Q is N 2.

1. Algorithms for the generation  
of matrices and vectors  
for the problem (1)–(3)

The most noticeable reduction in the dimen-
sion of the problem (1)–(3) can be achieved by 
taking into account only freight routes in vec-
tor , the use of which will lead to partial or full 
execution of orders. In other words, reducing 
the dimension of the problem can be organ-
ized by removing from the vector  those cargo 
routes that in any case will not be involved. In 
addition to vector , the corresponding transfor-
mations must be performed in all other vectors 
and matrices of the problem (1)–(3) so that 
they are all consistent. 

In this section, an algorithm for generating all 
matrices and vectors of reduced dimension for 
the problem (1)–(3) is described. In addition to 
removing unnecessary cargo routes from con-
sideration, the algorithm also provides for the 
possibility of excluding empty routes selected 
for any reason from the calculation.

PC, Q, S0 vectors and dynamic lists

Let us introduce new variables, routes_from_
station_cargo, routes_to_station_cargo and 
routes_from_station_empty, routes_to_station_
empty, which are dynamic lists with elements 
taking integer values. The elements of these 
variables are responsible for the numbers of 
those routes that are going to be taken into 
account in the calculation. The routes_from_
station_cargo list contains numbers of outgoing 
stations for each of the considered cargo routes; 
routes_to_station_cargo contains the corre-
sponding numbers of incoming stations for 
the same cargo routes. Similarly, routes_from_
station_empty contains outgoing station num-
bers for empty routes; routes_to_station_empty 
contains incoming station numbers for corre-
sponding empty routes. If we take into account 
all possible routes, as is done in [17], then the 
number of elements contained in the new vari-
ables is going to be equal to N 2. However, these 
variables were introduced so that fewer routes 
could be taken into account, thereby reducing 
the dimension of the problem. 

Let us fill in the variables routes_from_station_
cargo and routes_to_station_cargo. We will take 
into account only those routes that are in the 
requests; therefore, if there is a request from 
station i to station j, that is, P

ij
 > 0 then add the 

element i to the variable routes_from_station_
cargo on the right, and add the element j to the 
variable routes_from_station_cargo on the right. 
Simultaneously with each addition of elements 
to the variables routes_from_station_cargo and 
routes_to_station_cargo, we will compose a 
vector p by sequentially adding elements P

ij
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from below, and we will also compose a vec-
tor Q by sequentially adding elements  from 
below characterizing the volumes of the corre-
sponding applications. Thus, at each iteration, 
the dimension of the vectors p and Q, as well 
as the variables routes_from_station_cargo  and 
routes_to_station_cargo increases by one. 

It can be seen that the resulting vector Q 
takes into account only cargo routes, and not 
all possible routes, as was in [17]. Due to this, 
the dimension of the vector Q is reduced from 
N 2 to N

cargo
.

It is assumed that for each pair of stations i 
and j, there can be no more than one request 
from station i to station j. If there are two 
requests for a pair of stations i and j from i to j, 
then in this case a duplicate of station м is cre-
ated, let us call it , and in the variables routes_
from_station_cargo  and routes_to_station_cargo 
not only i and j are added, but also  and j, 
respectively. In the case of two bids, the vector p 
is filled with the corresponding bids in the same 
sequence as the variables  routes_from_station_
cargo and routes_to_station_cargo. Communi-
cation between station i and its duplicate  is 
instantaneous and free of charge. At the same 
time, there is no back route from station i to 
station . All incoming routes are directed to 
station i, one can get to station  only through 
station i. This is done so that cyclic flows from 
station i to  and back do not appear in solu-
tions. The case when there may be more than 
two requests from station i to station j is not 
considered in this article – this is a separate 
topic, the disclosure of which we will leave for 
subsequent works in this direction.

Similarly, the outes_from_station_empty and 
routes_to_station_empty variables are filled with 
station numbers only of those routes that were 
selected according to some criteria. Simultane-
ously with filling in the variables routes_from_
station_empty and routes_to_station_empty, 
by analogy with the vector p, a new vector  is 
filled by adding elements C

ij
 from below (the 

cost of an empty run from station i to station j). 

The order of adding elements to vector  cor-
responds to the order of adding elements to the 
variables routes_from_station_empty and routes_
to_station_empty. Thus, at each iteration, the 
dimension of the vector , as well as the vari-
ables routes_from_station_empty and routes_to_
station_empty increases by one.

One way to reduce the dimension due to empty 
routes is to remove from consideration those 
empty routes, the arrival stations in which are 
not departure stations for any of the requests for 
loaded routes. The idea is that there is no need 
to come to such stations by empty routes, since 
cars can only leave there by other empty routes, 
which is unlikely to be optimal. The exception 
is routes from these stations to themselves, it is 
better to leave such routes in numerical calcu-
lation, since either wagons from the previous 
period arrive at these stations, or they are the 
final destination for some loaded routes. Here 
it is necessary to make a reservation that this 
method of removing empty routes from consid-
eration is justified, provided that the time and 
financial costs of empty runs from an arbitrary 
station A to an arbitrary station B are always no 
more than when carrying out two consecutive 
empty runs from A to some station C and from 
C to B. In practice, this condition is fulfilled, so 
the exclusion of such double empty routes from 
consideration does not lead to a deterioration in 
the target indicators of the solutions obtained. 

Using N
cargo

 we denote the dimension of vec-
tor p, which coincides with the number of ele-
ments in the variables routes_from_station_
cargo and routes_to_station_cargo; using N

empty
 

we denote the dimension of the vector , which 
also coincides with the number of elements in 
the variables routes_from_station_empty and 
routes_to_station_empty. In other words, N

cargo
 

characterizes the number of all cargo routes 
corresponding to the list of requests; N

cargo
 

characterizes the number of all possible empty 
routes that are taken into account when search-
ing for the optimal plan.
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Let us construct a vector PC of a smaller 
dimension compared to a similar vector in 
[17]. To do this, we perform T – 1 consecutive 
concatenation of the vector p so that we get a 
vector of dimension T  N

cargo
. Next, we also add 

the vector  to the resulting vector by sequen-
tial concatenation T – 1 times. Assign the 
value of the resulting vector to the vector PC; 
its dimension of this vector is T  (N

cargo 
+ N

empty 
). 

The new dimension of the problem (1)–(3) is 
also equal to T  (N

cargo 
+ N

empty 
). Obviously, the 

elements of vector K  correspond to the same 
routes that correspond to both the rates and 
costs of vector PC. 

The algorithm for creating vector S
0
 described 

in [17] will remain unchanged. Namely, the sys-
tem of vectors (t), t  {1, ...,T } is transformed 
into a vector S

0
 by sequential concatenation of 

vectors corresponding to each moment of time. 
With this concatenation, the first N elements of 
the new vector correspond to the vector (1), 
the next N elements correspond to the vector 

(2), etc. Thus, the dimension of the vector S
0
 

equals to TN.

Ain and Aout matrices

Each of the A
in

 and A
out

 matrices consists 
of two parts. The first part is responsible for 
cargo routes, the second for empty ones. These 
matrices are sparse matrices; any nonzero ele-
ment in them takes a single value. Let us con-
struct A

out
 matrix, which is responsible for out-

going routes originating from each station. 
At the zero iteration, the A

out
 matrix is a zero 

matrix of size T  N    T  (N
cargo 

+ N
empty 

). 

Let us denote by Index_cargo_out[1] a 
dynamic list of indexes k  {1,  ..., N

cargo 
}, for 

which routes_from_station_cargo[k] = 1 In other 
words, the variable Index_cargo_out[1] contains 
the numbers of those freight routes among the 
first N

cargo
 elements of vector K, the starting 

point for which is station 1. For an arbitrary 
station i  {1,  ..., N

 
}, the interpretation of the 

variable Index_cargo_out[i] is similar. 

To account for outgoing routes from station 
1 in the first time period, it is necessary for all  
k  Index_cargo_out[1] elements A

out 
[1, k] to be 

assigned the value 1. To account for outgoing 
routes from station 1 in the second time period, 
it is necessary to assign value 1 to the elements 
A

out 
[1 + N, k + N

cargo
], k  Index_cargo_out[1].  

N is added to the first component of the coor-
dinates of the A

out
 matrix, since the period in 

the vector S
0
 is equal to N. In other words, the 

first N elements in this vector are responsible 
for N stations in the first time period, and the 
next N elements are responsible for the same 
N stations in the second time period, etc. N

cargo
 

elements are added to the second component 
of coordinates of the A

out
 matrix, since the 

period in the first part of the PC vector respon-
sible for the rates of loaded runs is equal to 
N

cargo
. In other words, the first N

cargo
 elements 

in the first part of the PC vector are responsi-
ble for routes starting in the first time period; 
the next N

cargo
 elements are responsible for the 

same routes, but starting in the second time 
period, and so on. In other words, the first 
N

cargo
 elements in the first part of the PC vec-

tor are responsible for routes starting in the 
first time period; the next N

cargo
 elements are 

responsible for the same routes, but starting in 
the second time period, and so on. Continuing 
this logic further, it is clear that all elements 
of matrix A

out
 with coordinates [1 + (t – 1)  N,  

k + (t – 1)  N
cargo

], k  Index_cargo_out[1] have 
to be assigned to value 1. Thus, to obtain the 
A

out
 matrix, it is necessary for each station  

i  {1,  ..., N
 
} to create a dynamic listIndex_

cargo_out[i] with such numbers k  {1, ..., N
cargo

} 
for which routes_from_station_cargo[k] = i.  
Further, for all i  {1,  ..., N

 
} for which Index_

cargo_out[i]  0, elements of A
out

 matrix with 
coordinates [i + (t – 1)  N, k + (t – 1)  N

cargo
], 

k  Index_cargo_out[i], t  {1,  ...,T } have to 
be assigned to value 1. The first part of the 
A

out  
matrix responsible for cargo routes has 

been formed. Similarly, the second part of 
this matrix is formed, which is responsible 
for empty routes. To do this, for each station  
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For an arbitrary station i  {1,  ..., N
 
} dynamic 

variables Index_cargo_in[i] are compiled from 
those indexes k  {1, ..., N

cargo
} of the variable 

routes_to_station_cargo[k] for which routes_to_
station_cargo[k] = i. For all i  {1,  ..., N

 
} for 

which Index_cargo_in[i]  0, elements of A
in
 

matrix with coordinates [i + ( [routes_from_
station_cargo[k], i] + t – 1)  N, k + (t – 1)  N

cargo
], 

k  Index_cargo_in[i],  t  {1,  ...,T } have to be 
assigned to value 1.

The first part of the A
in
 matrix relating to 

loaded routes is constructed. It remains to con-
struct the second part of this matrix relating to 
empty routes. Denote by Index_empty_in[i] a 
dynamic list of those indexes k  {1, ..., N

cargo
}  

of the variable routes_to_station_empty[k] for 
which routes_to_station_empty[k] = i. For all  
stations i  {1,  ..., N

 
} for which Index_

empty_in[i]  0, elements of A
in
 matrix with 

coordinates[i + (  [routes_from_station_
cargo[k], i] + t – 1)  N, k + (t – 1)  N

empty
+ T  N

cargo
],  

k  Index_empty_out[i], t  {1, ..., T } have to be 
assigned to value 1.

AQ matrix

The A
Q
 matrix is needed to calculate the vol-

ume of completed requests, so only loaded 
routes are taken into account when calculating 
this indicator. This means that in the matrix A

Q
, 

which has dimension N
cargo

  T  ( N
cargo

 +N
empty 

), 
the last T  N

empty
 columns consist exclusively of 

zero elements, non-zero elements are found 
only in the first T  N

cargo
 columns. At the zero 

iteration, we take the zero matrix as the A
Q
 

matrix.

Since the first T  N
cargo

  elements of vector K 
are ordered with the period N

cargo
, i.e. the first 

N
cargo

 elements are responsible for loaded routes 
outgoing in the first time period, the next N

cargo
 

elements are responsible for the same routes 
outgoing in the second time period, etc. Then 
in the first row of A

Q
 matrix T units are written, 

the first of which is put on the first position, the 

i  {1,  ..., N
 
}, other Index_empty_out[i] lists 

are formed with the following numbers  
k  {1, ..., N

empty
}, for which routes_from_station_ 

empty[k] = i. In other words, the variable 
Index_cargo_out[i] contains the numbers of 
those empty routes among the N

empty 
 elements 

of the vector K following T  N
cargo

 elements, the 
starting point for which is station i.

Further, for all i  {1,  ..., N
 
} for which Index_

empty_out[i]  0, elements of A
out

 matrix with 
coordinates [i + (t – 1)  N, k + (t – 1)  N

empty
+ 

+ T  N
cargo

], k  Index_empty_out[i], t  {1,  ...,T} 
have to be assigned to value 1. Since the first 
T  N

cargo
 elements in vector K are responsible 

for cargo routes, the rest are responsible for 
empty ones. Then in the case of considering 
empty routes in the second component of the 
A

out
 matrix, there is an additional term T  N

cargo
. 

After performing all the described operations, 
the construction of the A

out
 matrix is completed. 

At the next stage, the A
in
 matrix is formed. This 

matrix is responsible for the incoming routes to 
each station. At the zero iteration A

in
 matrix is 

a zero matrix of size T  N  T  (N
cargo

 + N
empty

). 
 To form this matrix, we additionally need infor-
mation about the travel time for each of the 
routes, that is, the values of the matrices  and 

. Denote by Index_cargo_in[1] a dynamic list 
of those indexes k  {1, ..., N

cargo
} of the variable 

routes_to_station_cargo[k] for which routes_to_
station_cargo[k] = 1. For an arbitrary station 
i  {1,  ..., N

 
}, the interpretation of the varia-

ble Index_cargo_in[1] is similar. Then, in order 
to account for incoming routes to station 1, 
departures on which are carried out in the first 
time period, elements of A

in
 matrix with coor-

dinates [1 +  [routes_from_station_cargo[k], 1]
 

 
N, k], k  Index_cargo_in[1] have to be assigned 
to value 1. Similarly, to account for incoming 
routes to station 1, departures on which are 
carried out in the time period t  {1,  ...,T}, 
elements of A

in
 matrix with coordinates [1 +  

+ ( [routes_from_station_cargo[k], 1] + t – 1)  N,  
k + (t – 1)  N

cargo
], k  Index_cargo_in[1] have to 

be assigned to value 1. 
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next to the position N
cargo

 + 1, the next to the 
position 2N

cargo
 + 1, etc. In other words, in the 

first row of A
Q
 matrix, T elements are assigned 

to the unit starting from the first element and 
then with the period N

cargo
 elements. In the next 

row of the A
Q
 matrix, the unit is also assigned 

T elements with the period N
cargo

, but starting 
from the second element of the second row. In 
the third row of the A

Q
 matrix, the algorithm 

is repeated, but the unit is assigned elements 
starting from the third element of the third row. 
This continues until the last line of N

cargo
. As a 

result, if we consider the first N
cargo

 rows and 
the first N

cargo
 columns, we get a unit matrix, 

if we consider the next N
cargo

 columns, we also 
get a unit matrix, etc. If we consider the first  
T  N

cargo
 columns of the matrix A

Q
, we will see  

T sequentially composed unit matrices of 
dimension N

cargo
  N

cargo
, the remaining columns 

of the matrix are zero.

This section provides algorithms for the 
construction of all components of the prob-
lem (1)–(3) – objective function and con-
straints. It is shown that the dimension of both 
the vector of variables of the objective func-
tion and the constraint matrices is notice-
ably reduced. We will demonstrate this both 
on a model example (several stations, a short 
planning horizon) given in [17] and on a real 
example (more than 1,000 stations, long plan-
ning horizon).

2. Reducing the dimensionality  
of the problem on model  

and real examples

Here is a statement of the model exam-
ple from [17]. The number of stations is 4  
(N = 4), the planning horizon is 3 days (T = 3).  
The list of received requests consists of five 
items, which are shown in Table 1.

Based on the list of requests, it is necessary to 
make two matrices – a matrix of rates P, the 
elements of which are written in conventional 
units, and a matrix of request volumes  :

Next, we will give the travel time of both loaded 
and empty routes in the form of the values of 
the matrices   and :

Recall that the diagonal elements of the 
matrix  are equal to one. This is due to the 
fact that if the cars need to be left at the station 
until the next day, then this is equivalent to the 

Table 1. 
List of requests for cargo transportation in the model example

No. Departure station Destination station Volume of requests  
(in wagons)

Rate  
(in conditional units)

1 1 3 3 2.9

2 2 1 5 1.1

3 2 3 4 2.3

4 3 2 7 1.9

5 3 4 6 2.1
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fact that they are, as it were, sent from this sta-
tion to itself on a one-day run.

The values of the Russian Railways tariffs 
for empty runs, as well as the rates expressed 
in conventional units, are characterized by the 
values of the elements of the matrix C:

As part of this task, it is assumed that cars can 
stay at stations until the next day for free, so the 
diagonal elements of the matrix C are zero.

The initial distribution of wagons is charac-
terized by the following vectors:

During the period t = 3, the wagons do not 
arrive, which is equivalent to the zero vector 

.

Dimension of the problem

The dimension of the problem presented 
in [17] is 2TN 2 = 96. We calculate dimension 
when solving the same problem using the algo-
rithm presented in this paper. The proposed algo-
rithm gives the dimension T  (N

cargo 
+ N

empty 
).  

Therefore, in order to calculate it, it is neces-
sary to know the values of the parameters N

cargo
 

and N
empty

. To determine N
empty

, it is necessary to 
understand which empty routes are planned to 
be included in the calculation, which are not. 
We exclude from consideration those empty 
routes, the arrival stations in which are not 
departure stations for any loaded runs from cli-
ents’ requests. There is one such station and 
this is station four. We will remove from con-
sideration all empty routes in which the des-

tination is station 4. We will leave only the 
route from 4 to 4 (the car remains at the sta-
tion until the next period). It turns out that 
empty routes from 1 to 4, from 2 to 4 and from 
3 to 4 are removed from consideration. We get 
that N

empty 
= N 2 — 3 = 13. As for N

cargo
, its value 

is equal to the number of requests, i.e. in our 
case N

cargo 
= 5. Thus, the dimension when using 

the new algorithm turns out to be equal to  
T  (N

cargo 
+ N

empty 
) = 54. It turns out that spe-

cifically for this example the dimension of the 
problem has decreased by about 44%. Sepa-
rately, we note that in practice, empty routes 
can be excluded from the calculation for other 
reasons, for example, empty routes can be 
ignored, the tariff for which is higher than a cer-
tain threshold value. Therefore, in real prob-
lems, it is possible to achieve an even greater 
reduction in dimension compared to 2TN 2. 

As an example, we can consider the prob-
lem of finding the optimal plan which was 
solved in practice for N  = 1126 stations, with 
a planning period of T = 30 days and the 
number of requests for cargo transportation 
equal to 1616. The dimension of the problem 
when solving it by the algorithm from [17] is  
TN 2 = 76072560. To determine the dimen-
sion of the problem, which is obtained using 
the algorithm presented in this paper, one 
needs to calculate N

cargo
 and N

empty
. Obviously,  

N
cargo 

= 1616, which corresponds to the number 
of requests. To calculate N

empty
, it is necessary 

to remove from consideration all empty routes 
in the direction to stations that do not appear 
in requests as departure stations. In addition, 
empty routes with tariffs exceeding 50 000 
rubles are removed from consideration. As a 
result, the number of empty routes that should 
be taken into account in the calculation equals 
to N

empty 
= 82058, i.e. approximately 6.5% of 

all possible empty routes take part in calcula-
tion; the number of all empty routes is equal 
to N 2 = 1267877. As a result, the dimension 
of the problem is equal to T  (N

cargo 
+ N

empty 
) = 

= 2510220, i.e. it decreases by about 30 times.
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Linear programming

One can write out the linear programming 
problem (1)–(3) for the model example. To 
do this, we determine the values of the matri-
ces A

in
, A

out 
and A

Q
, as well as the vectors PC, 

S
0
, Q. After that, we solve this problem and 

compare the resulting solution with the solu-
tion from [17].

Dynamic listsroutes_from_station_cargo, 
routes_to_station_cargo and routes_from_station_
empty, routes_to_station_empty are the following:

routes_from_station_cargo = {1, 2, 2, 3, 3},

routes_to_station_cargo = {3, 1, 3, 2, 4},

routes_from_station_empty = {1, 1, 1, 2, 2, 2, 3, 3, 3, 
4, 4, 4, 4},

routes_to_station_empty = {1, 2, 3, 1, 2, 3, 1, 2, 3, 
1, 2, 3, 4}.

One can make up the vectors p and c:

p = (2.9    1.1    2.3    1.9    2.1)T

c = (0   1.9   1.3   1.2   0   1.8   1.1   1.2   0   1.3   1.5   
1.2   0)T.

The PC vector is obtained by sequential con-
catenation of the resulting vectors:

PC = (pT, pT, pT, cT, cT, cT)T.

Vector Q, which is responsible for the volume 
of requests, takes the following form:

Q = (3   5    4    7    6)T.

The vector S
0
, which characterizes the initial 

distribution of wagons by time and by stations, 
takes the form:

S
0
 = (0   2    1    3    5   0   0   1   0    0   0   0)T

We get the matrices A
in
, A

out
 and A

Q
. Since 

these matrices are sparse matrices, and 
nonzero elements can only take single values, 
therefore, as in [17], one can write these matri-
ces in a sparse format, specifying the coordi-
nates of the elements taking value 1. Let us 
write out the coordinates of unit elements of 
A

Q
 matrix, the dimension of which is equal to  

N
cargo

  T  ( N
cargo

 +N
empty 

) = 5  54 (hereafter the 
numbering of rows and columns begins with 
one):

(1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (1, 6), (2, 7), 
(3, 8), (4, 9), (5, 10), (1, 11), (2, 12), (3, 13), (4, 
14), (5, 15).

Coordinates of unit elements of A
in

 matrix are 
the following:

(7, 1), (5, 2), (11, 3), (10, 4), (12, 5), (11, 6),  
(9, 7), (5, 16), (6, 17), (7, 18), (5, 19), (6, 20), 
(7, 21), (5, 22), (6, 23), (7, 24),  (5, 25), (10, 26), 
(7, 27), (8, 28), (9, 29), (10, 30), (11, 31), (9, 32), 
(10, 33), (11, 34), (9, 35), (10, 36), (10, 37), 
(9, 38), (11, 40), (12, 41).

The list of coordinates of the unit elements 
of A

ou
matrix:

(1, 1), (2, 2), (2, 3), (3, 4), (3, 5), (5, 6), (6, 7),  
(6, 8), (7, 9), (7, 10), (9, 11), (10, 12), (10, 13),  
(11, 14), (11, 15), (1, 16), (1, 17), (1, 18),  
(2, 19), (2, 20), (2, 21), (3, 22), (3, 23), (3, 24), 
(4, 25), (4, 26), (4, 27), (4, 28), (5, 29), (5, 30), 
(5, 31), (6, 32), (6, 33), (6, 34), (7, 35), (7, 36), 
(7, 37), (8, 38), (8, 39), (8, 40), (8, 41), (9, 42),  
(9, 43), (9, 44), (10, 45), (10, 46), (10, 47),  
(11, 48), (11, 50), (12, 51), (12, 52), (12, 53), 
(12, 54).

The dimension of the matrices A
in

 and A
ou

 is  
T  N  T  (N

cargo
 +N

empty 
) = 12  54.

Let us write out the solution that was obtained 
by using MatLab. Since vector K, consisting of 
T  (N

cargo
 + N

empty 
) = 54 elements, also mainly 

consists of zero elements, we write out values 
of only non-zero elements:

K
3
 = 2; K

4
 = 1; K

6
 = 3; K

13
 = 2; K

14
 = 4; K

15
 = 6; 

K
26

 = 1; K
28

 = 2; K
31

 = 2; K
40

 = 3.

One can write out the same solution in a 
more understandable format of matrices K1(t) 
and K2(t), which are (N  N)-matrices. Ele-
ments of these matrixes characterize the num-
ber of loaded (K1(t)) and empty (K2(t)) wag-
ons sent from station i to station j at the time 
 t  {1,  ...,T }.
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Graphically, this solution is shown in Fig. 1. 
The width of each lane in this picture charac-
terizes the number of wagons sent in a given 
direction.

The target value of profit, calculated accord-
ing to the rule PC T  K, is equal to 32.3.

If we compare the obtained solution with the 
solution from [17], it is clear that they differ, 
but the values of the target functional express-
ing the final profit are the same. Thus, the 
comparison of solutions to the same problem 
shows that the problem has at least two differ-
ent solutions. 

Conclusion

This article is a continuation of the work 
[17]. It presents a modified algorithm for solv-
ing the problem of optimal management of a 
fleet of freight cars. The essence of the pro-
posed approach is to exclude from the calcula-
tion those loaded or empty routes about which 
it is known in advance that they either will not 
be involved in the final solution or the prob-
ability of these routes appearing in the solu-
tion is estimated as very low. The model exam-
ple presented in the paper shows that the use of 

Fig. 1. Schematic representation of the resulting solution.
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the modified algorithm leads to a reduction in 
dimension by about 44%. In practice, as a rule, 
there is a much more noticeable decrease in 
dimensionality, in particular because the exclu-
sion of an even larger number of empty routes 
from the calculation due to additional features 
(for example, to exclude too expensive, too long 
empty routes). So, in the problem mentioned 
in the previous section, which was solved on the 
basis of real data, the use of an improved algo-
rithm leads to a thirty-fold reduction in dimen-
sion compared to the algorithm from [17]. 

Separately, we note that the potential of meth-
ods that allow us to significantly reduce the 
dimension for transport problems has not been 
fully exhausted. It can be shown that the space-
time graph that is being constructed within the 
framework of the presented approach can be 
reduced even more without loss in the quality of 
final solutions (reducing the space-time graph 
will obviously lead to a decrease in the dimen-
sion of the transport problem). To do this, one 
can divide all stations into three categories. The 
first category includes stations to which wagons 
arrive from the previous period and which do 
not participate in requests for cargo transpor-
tation either as departure stations or as desti-
nation stations. The second category includes 
stations that appear in the requests as destina-
tion stations, but not as departure ones, and the 
third category includes the remaining stations, 
that is, the stations indicated in the requests as 
departure ones. For the first category of stations, 
one can build outgoing empty routes exclusively 
for those days in which cars arrive from previ-
ous period (previous month) only to stations 
of the third category. In other words, as soon as 
wagons get to these stations, they are immedi-
ately sent by an empty run to the stations from 
which requests for cargo transportation can be 
executed. For stations of the second category, 
incoming empty routes are not built, but only 
outgoing empty routes are built in stations of the 
third category. For stations of the third category, 
a full-fledged space-time graph with incom-

ing and outgoing empty routes is being built. 
The description of the specified algorithm may 
become the subject of one of the following arti-
cles in this direction. Reducing the space-time 
graph, and hence the dimension of the trans-
port problem, can be achieved by other more 
subtle methods. For example, when construct-
ing a space-time graph for stations of the second 
and third types, it is possible to additionally take 
into account from what earliest moment in time 
wagons may begin to appear in these stations and 
not to build a graph for the corresponding sta-
tions until this moment of model time. In this 
case, in the struggle to reduce the dimension, the 
only payment is an even greater complication of 
the algorithms for the formation of matrices and 
vectors for the problem (1)–(3), which in turn 
increases the probability of errors when creating 
such algorithms. 

In addition to efforts to further optimize algo-
rithms for the formation of matrices and vectors, 
another direction for the development of this 
type of tasks is modernization of the formulation 
of the optimal management problem of the fleet 
of freight cars in order to take into account more 
restrictions. In the current version, the trans-
port problem is of exclusively scientific interest, 
but not practical in any way. For railway trans-
port operators, who are the main customers of 
such models, it is important to be able to take 
into account a sufficiently large number of fac-
tors, among which is the possibility to take into 
account various types of wagons, the prohibition 
for some types of wagons to enter certain terri-
tories, accounting of sediment stations, restric-
tions on the minimum or maximum number of 
wagons that must move in the specified direc-
tions during the planning horizon etc. The study 
of the problems described above may be the sub-
ject of future research.  
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