Abstract
Innovative technologies are increasingly determining the competitive advantage of enterprises. They also form the basis for modern manufacturing processes, enabling them to meet the needs of society. Awareness of the need for technological development has become widespread, which has been confirmed by international and national programs, scientific and research activities, as well as emerging institutions. Considering the increasing demand for innovative technologies and the developed market, it appears important to use specific methods and tools for the effective analysis and selection of technologies. This paper presents a proposal to use multi-attribute decision-making methods during technology assessment and selection. The proposed concept combines an S-life-cycle analysis (S-LCA), which determines the performance of a technology, the method of Technology Readiness Levels (TRL), which examines the technological maturity, and the TOPSIS method, which allows for developing a technology ranking. To verify this approach, the example of a ranking and selection of the best road technology in Poland is presented, considering the proposed set of criteria and sub-criteria. In the technology assessment, the criteria for innovation, competitiveness, and usefulness of this technology were used in addition to S-LSA and TRL methods.
References
Aloini D., Dulmin R., Mininno V., Pellegrini L., Farina G. (2018) Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector // Technological Forecasting and Social Change. Vol. 131. P. 38-48. DOI: https://doi.org/10.1016/j.techfore.2017.07.010
Anand M.B., Vinodh S. (2018) Application of fuzzy AHP - TOPSIS for ranking additive manufacturing processes for microfabrication // Rapid Prototyping Journal. Vol. 24. № 2. P. 424-435. DOI: https://doi.org/10.1108/RPJ-10-2016-0160
Ansari R., Soltanzadeh J., Tavassoli A. (2016) Technology selection between technology management and decision making: A case study from the Iranian automotive industry // International Journal of Automotive Technology and Management. Vol. 16. № 4. P. 365-388. DOI: https://doi.org/10.1504/IJATM.2016.081618
Arora S.K., Foley R.W., Youtie J., Shapira P., Wiek A. (2014) Drivers of technology adoption: The case of nanomaterials in building construction // Technological Forecasting and Social Change. Vol. 87. P. 232-244. DOI: https://doi.org/10.1016/j.techfore.2013.12.017
Boran F.E., Genc S., Kurt M., Akay D. (2009) A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method // Expert Systems with Applications. Vol. 36. № 8. P. 11363-11368.
Buyukozkan G., Guler M. (2017) A hesitant fuzzy based TOPSIS approach for smart glass evaluation // Proceedings of: EUSFLAT-2017 -The 10th Conference of the European Society for Fuzzy Logic and Technology, September 11-15, 2017, Warsaw, Poland / Eds. J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak. Heidelberg, Dordrecht, London, New York: Springer. P. 330-341. DOI: https://doi.org/10.1007/978-3-319-66830-7_30
Carlsen H., Dreborg K.H., Godman-Hansson S.O., Johansson L., Wikman-Svahn P. (2010) Assessing socially disruptive technological change // Technology in Society. Vol. 32. P. 209-218. Режим доступа: , дата обращения 14.03.2019. DOI: https://doi.org/10.1016/j.techsoc.2010.07.002
Chodakowska E., Nazarko J. (2017) Environmental DEA method for assessing productivity of European countries // Technological and Economic Development of Economy. Vol. 23. № 4. P. 589-607. DOI: https://doi.org/10.3846/20294913.2016.1272069
Coates J.F. (1998) Technology assessment as guidance to governmental management of new technologies in developing countries // Technological Forecasting and Social Change. Vol. 58. № 1-2. P. 35-46. DOI: https://doi.org/10.1016/S0040-1625(97)00087-5
Daim T.U., Yoon B.S., Lindenberg J., Grizzi R., Estep J., Oliver T. (2018) Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment. Technological Forecasting and Social Change. Vol. 131. P. 49-66. DOI: https://doi.org/10.1016/j.techfore.2017.06.006
Ejdys J. (2015) Innovativeness of residential care services in Poland in the context of strategic orientation // Procedia - Social and Behavioral Sciences. Vol. 213. P. 746-752. DOI: https://doi.org/10.1016/j.sbspro.2015.11.461
Ejdys J., Matuszak-Flejszman A., Szymanski M., Ustinovicius L., Shevchenko G., Lulewicz-Sas A. (2016) Crucial factors for Improving the ISO14001 Environmental Management System // Journal of Business Economics and Management. Vol. 17. № 1. P. 52-73. DOI: https://doi.org/10.3846/16111699.2015.1065905
Elahi M., Alvandi M., Valehzagharad H.K., Memarzade M. (2011) Selecting the best ABS sensor technology using fuzzy MADM // Scientific Research and Essays. Vol. 6. № 31. P. 6487-6498. DOI: https://doi.org/10.5897/SRE11.1079
Fu J., Xie L., Qu M., Liang G., Ma X., Tang J., Zhang R., Bai Y. (2012) The application of entropy weight TOPSIS method to the optimization of wastewater treatment technology in livestock and poultry slaughtered plant // Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science). Vol. 28. № 5. P. 909-914.
Gajdos O., Jurickova I., Otawova R. (2015) Health technology assessment models utilized in the chronic care management // Proceedings of the Third International Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015 / Eds. F. Ortuno, I. Rojas. Heidelberg, Dordrecht, London, New York: Springer. P. 54-65.
Gladysz B., Nalepa K., Santarek K. (2017) Justification of RFID implementation. A case study of white goods manufacturer // Management and Production Engineering Review. Vol. 8. № 4. P. 91-104. DOI: https://doi.org/10.1515/mper-2017-0040
Goulet D. (1994) Participatory Technology-Assessment - Institutions and Methods // Technological Forecasting and Social Change. Vol. 45. № 1. P. 47-61. DOI: https://doi.org/10.1016/0040-1625(94)90062-0
Govind Kharat M., Murthy S., Jaisingh Kamble S., Raut R.D., Kamble S.S. (2018) Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection // Technology in Society. Vol. 57. P. 20-29. DOI: https://doi.org/10.1016/j.techsoc.2018.12.005
Grimaldi M., Cricelli L., Di Giovanni M., Rogo F. (2015) The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning // Technological Forecasting and Social Change. Vol. 94. P. 286-302. DOI: https://doi.org/10.1016/j.techfore.2014.10.013
Habbal A., Goudar S.I., Hassan S. (2017) Context-aware radio access technology selection in 5G ultra dense networks // IEEE Access. Vol. 5. P. 6636-6648. DOI: https://doi.org/10.1109/ACCESS.2017.2689725
Habbal A., Goudar S.I., Hassan S. (2019) A context-aware radio access technology selection mechanism in 5G mobile network for smart city applications // Journal of Network and Computer Applications. Vol. 135. P. 97-107. DOI: https://doi.org/10.1016/j.jnca.2019.02.019
Halicka K. (2017) Main Concepts of Technology Analysis in the Light of the Literature on the Subject // Procedia Engineering. Vol. 182. P. 291-298.
Halicka K. (2018) The reference methodology of prospective analysis of technology in production engineering // 8th International Conference on Engineering, Project, and Product Management (EPPM 2017) Proceedings / Ed. S. Sahin. Heidelberg, Dordrecht, London, New York: Springer. P. 99-107. DOI: https://doi.org/10.1007/978-3-319-74123-9_11
Hirushie K., Kasun H., Rehan S. (2017) Renewable energy technology selection for community energy systems: A case study for British Columbia. Paper presented at the 2017 CSCE Annual General Conference, Vancouver, BC, Canada. Режим доступа: https://www.researchgate.net/publication/326211412_Renewable_energy_technology_selection_for_community_energy_systems_A_case_study_for_British_Columbia, дата обращения 26.04.2019.
Hwang C.L., Yoon K. (1981) Multiple Attribute Decision Making: Methods and Applications. Berlin: Springer-Verlag.
Jiri M. (2018) The robustness of TOPSIS results using sensitivity analysis based on weight tuning // IFMBE Proceedings. Vol. 68. № 2. P. 83-86. DOI: https://doi.org/10.1007/978-981-10-9038-7_15
Kacprzak D. (2017) Objective Weights Based on Ordered Fuzzy Numbers for Fuzzy Multiple Criteria Decision Making Methods // Entropy. Vol. 19. № 373. Режим доступа: https://pdfs.semanticscholar.org/9ff9/552d78357f946c5fd35b4822d5c6be693cac.pdf, дата обращения 12.04.2019. DOI: https://doi.org/10.3390/e19070373
Kacprzak D. (2019) A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers // Expert Systems with Applications. Vol. 116. P. 243-254. DOI: https://doi.org/10.1016/j.eswa.2018.09.023
Kalbar P.P., Karmakar S., Asolekar S.R. (2012) Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decision-making approach // Journal of Environmental Management. Vol. 113. P. 158-169. DOI: https://doi.org/10.1016/j.jenvman.2012.08.025
Karatas M., Sulukan E., Karacan I. (2018) Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology // Energy. Vol. 153. P. 890-912. DOI: https://doi.org/10.1016/j.energy.2018.04.051
Kikolski M., Chien-Ho Ko (2018) Facility layout design - review of current research directions // Engineering Management in Production and Services. Vol. 10. № 3. P. 70-79. DOI: https://doi.org/10.2478/emj-2018-0018
Lee Y., James Chou C. (2016) Technology evaluation and selection of 3DIC integration using a three-stage fuzzy MCDM // Sustainability (Switzerland). Vol. 8. № 2. P. 1-15. Режим доступа: https://ideas.repec.org/a/gam/jsusta/v8y2016i2p114-d62915.html, дата обращения 23.04.2019. DOI: https://doi.org/10.3390/su8020114
Lotfi F.H., Fallahnejad R. (2010) Imprecise Shannon's Entropy and Multi Attribute Decision Making // Entropy. Vol. 12. P. 53-62.
Lu C., You J., Liu H., Li P. (2016) Health-carewaste treatment technology selection using the interval 2-tuple induced TOPSIS method // International Journal of Environmental Research and Public Health. Vol. 13. № 6. DOI: https://doi.org/10.3390/ijerph13060562
Mardania A., Jusoha A., Halicka K., Ejdys J., Magruk A., Ungku Norulkamar U.A. (2018) Determining the utility in management by using multi-criteria decision support tools: A review // Economic Research/Ekonomska Istrazivanja. Vol. 31. P. 1666-1716. Режим доступа: , дата обращения 18.06.2019. DOI: https://doi.org/10.1080/1331677X.2018.1488600
Mobinizadeh M., Raeissi P., Nasiripour A.A., Olyaeemanesh A., Tabibi S.J. (2016) A model for priority setting of health technology assessment: The experience of AHP-TOPSIS combination approach // DARU, Journal of Pharmaceutical Sciences. Vol. 24. P. 1. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827190/, дата обращения 11.05.2019. DOI: https://doi.org/10.1186/s40199-016-0148-7
Nazarko J., Radziszewski P., Debkowska K., Ejdys J., Gudanowska A., Halicka K., Kilon J., Kononiuk A., Kowalski K., Krol J., Nazarko L., Sarnowski M., Vilutiene T. (2015) Foresight Study of Road Pavement Technologies // Procedia Engineering. Vol. 122. P. 129-136.
Nazarko L. (2017) Future-Oriented Technology Assessment // Procedia Engineering. Vol. 182. P. 504-509. DOI: https://doi.org/10.1016/j.proeng.2017.03.144
Nermed K. (2015) Wielokryterialna metoda wektora preferencji jako narzedzie wspomagajace proces decyzyjny [Multi-Criteria Preference Vector Method (PVM) as a tool supporting the decision making process] // Przeglad Statystyczny. Vol. 62. № 1. P. 93-115 (in Polish). Режим доступа: http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-0f4c6200-68b5-4c3f-b307-ad24fcb0eef4, дата обращения 18.04.2019.
Nouri F.A., Esbouei S.K., Antucheviciene J. (2015) A hybrid MCDM approach based on fuzzy ANP and fuzzy TOPSIS for technology selection // Informatica (Netherlands). Vol. 26. № 3. P. 369-388. DOI: https://doi.org/10.15388/Informatica.2015.53
Oztaysi B. (2014) A decision model for information technology selection using AHP integrated TOPSIS-grey: The case of content management systems // Knowledge-Based Systems. Vol. 70. P. 44-54. DOI: https://doi.org/10.1016/j.knosys.2014.02.010
Parkan C., Wu M. (1999) Decision-making and performance measurement models with applications to robot selection // Computers and Industrial Engineering. Vol. 36. № 3. P. 503-523.
Peng S., Li T., Li M., Guo Y., Shi J., Tan G.Z., Zhang H. (2019) An integrated decision model of restoring technologies selection for engine remanufacturing practice // Journal of Cleaner Production. Vol. 206. P. 598-610. DOI: https://doi.org/10.1016/j.jclepro.2018.09.176
Proceedings of the 5th International Congress on the Science and Technology of Ironmaking (ICSTI) 2009. P. 1039-1044.
Puthanpura A.K., Khalifa R., Chan L. (2015) Assessing emerging automotive technologies for the future // 2015 Proceedings of PICMET ‘15: Management of the Technology Age. P. 2113-2120. Режим доступа: https://pdfs.semanticscholar.org/9fe1/3e67e3ba91d29f8c9c0a3787355bf9519ae6.pdf, дата обращения 22.04.2019. DOI: https://doi.org/10.1109/PICMET.2015.7273223
Ren J. (2018) Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory // Chemosphere. Vol. 191. P. 747-760. DOI: https://doi.org/10.1016/j.chemosphere.2017.10.053
Ren J.Z., Liang H.W., Chan F.T.S. (2017) Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method // Technological Forecasting and Social Change. Vol. 116. P. 29-39. DOI: https://doi.org/10.1016/j.techfore.2016.10.070
Restrepo-Garces A.R., Manotas-Duque D.F., Lozano C.A. (2017) Metodo Hibrido Multicriterio-ROA, para la seleccion de fuentes de energia renovables: Caso de estudio centros comerciales [Multicriteria hybrid method - ROA, for the choice of generation of renewable sources: Case study in shopping centers] // Ingeniare. Vol. 25. № 3. P. 399-414. 10.4067/S0718-33052017000300399 (in Spanish). DOI: https://doi.org/10.4067/S0718-33052017000300399(inSpanish)
Roszkowska E., Kacprzak D. (2016) The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers // Information Sciences. Vol. 369. P. 564-584.
Rudnik K., Kacprzak D. (2017) Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system // Applied Soft Computing. Vol. 52. P. 1020-1041. DOI: https://doi.org/10.1016/j.asoc.2016.09.027
Schot J., Rip A. (1997) The past and future of constructive technology assessment // Technological Forecasting and Social Change. Vol. 54. № 2-3. P. 251-268. DOI: https://doi.org/10.1016/S0040-1625(96)00180-1
Streimikiene D. (2013a) Assessment of road transport technologies based on GHG emission reduction potential and costs // Transformations in Business and Economics. Vol. 12. № 2. P. 138-147.
Streimikiene D. (2013b) Assessment of energy technologies in electricity and transport sectors based on carbon intensity and costs // Technological and Economic Development of Economy. Vol. 19. № 4. P. 606-620. DOI: https://doi.org/10.3846/20294913.2013.837113
Streimikiene D., Balezentiene L. (2012) Assessment of electricity generation technologies based on GHG emission reduction potential and costs // Transformations in Business and Economics. Vol. 11. № 2A. P. 333-343.
Streimikiene D., Balezentis T., Balezentiene L. (2013) Comparative assessment of road transport technologies // Renewable and Sustainable Energy Reviews. Vol. 20. P. 611-618. DOI: https://doi.org/10.1016/j.rser.2012.12.021
Tamosiunas A. (2018) Managing selection of wind power generation technologies // Business: Theory and Practice. Vol. 19. P. 309-321. DOI: https://doi.org/10.3846/btp.2018.31
Tavana M., Khalili-Damghani K., Abtahi A. (2013) A hybrid fuzzy group decision support framework for advanced-technology prioritization at NASA // Expert Systems with Applications. Vol. 40. № 2. P. 480-491. DOI: https://doi.org/10.1016/j.eswa.2012.07.040
Tavella E. (2016) How to make Participatory Technology Assessment in agriculture more ‘participatory': The case of genetically modified plants // Technological Forecasting and Social Change. Vol. 103. P. 119-126. DOI: https://doi.org/10.1016/j.techfore.2015.10.015
Towhidi N., Tavakkoli-Moghaddam R., Peymandar M. (2009) Iron-making technology selection using a fuzzy hierarchical TOPSIS method.
Tran T.A., Daim T. (2008) A taxonomic review of methods and tools applied in technology assessment // Technological Forecasting and Social Change. Vol. 75. P. 1396-1405. DOI: https://doi.org/10.1016/j.techfore.2008.04.004
Van den Ende J., Mulder K., Knot M., Moors E., Vergragt P. (1998) Traditional and modern technology assessment: Toward a toolkit // Technological Forecasting and Social Change. Vol. 58. № 1-2. P. 5-21. DOI: https://doi.org/10.1016/S0040-1625(97)00052-8
Vavrek R., Adamisin P., Kotulic R. (2017) Multi-Criteria Evaluation of Municipalities in Slovakia - Case Study in Selected Districts // Polish Journal of Management Studies. Vol. 16. № 2. P. 290-301. DOI: https://doi.org/10.17512/pjms.2017.16.2.25
Velasquez M., Hester P.T. (2013) An Analysis of Multi-Criteria Decision Making Methods // International Journal of Operations Research. Vol. 2. № 10. P. 56-66.
Versteeg T., Baumann M.J., Weil M., Moniz A.B. (2017) Exploring emerging battery technology for grid-connected energy storage with Constructive Technology Assessment // Technological Forecasting and Social Change. Vol. 115. P. 99-110. DOI: https://doi.org/10.1016/j.techfore.2016.09.024
Vivekh P., Sudhakar M., Srinivas M., Vishwanthkumar V. (2017) Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE-2 // International Journal of Low-Carbon Technologies. Vol. 12. № 1. P. 24-35.
Wan S.-P., Wang F., Dong J.-Y. (2016) A novel group decision making method with intuitionistic fuzzy preference relations for RFID technology selection // Applied Soft Computing Journal. Vol. 38. P. 405-422. DOI: https://doi.org/10.1016/j.asoc.2015.09.039
Winebrake J.J., Creswick B.P. (2003) The future of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process // Technological Forecasting and Social Change. Vol. 70. № 4. P. 35-384. DOI: https://doi.org/10.1016/S0040-1625(01)00189-5
Yue Z. (2014) TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting // Information Sciences. Vol. 277. P. 141-153.
Zavadskas E.K., Mardani A., Turskis Z., Jusoh A., Nor K.M.D. (2016) Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015 // International Journal of Information Technology and Decision Making. Vol. 15. № 3. P. 645-682.
Zhang C., Chen C., Streimikiene D., Balezentis T. (2019) Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies // Applied Soft Computing Journal. Vol. 79. P. 410-423. DOI: https://doi.org/10.1016/j.asoc.2019.04.008
Zheng G., Jing Y., Huang H., Zhang X. (2011) Multihierarchical gray evaluation method to assess building energy conservation // Journal of Energy Engineering. Vol. 137. № 2. P. 88-98. DOI: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000041
Zimmermann M., Darkow I.L., von der Gracht H.A. (2012) Integrating Delphi and participatory backcasting in pursuit of trustworthiness - The case of electric mobility in Germany // Technological Forecasting and Social Change. Vol. 79. № 9. P. 1605-1621. DOI: https://doi.org/10.1016/j.techfore.2012.05.016

This work is licensed under a Creative Commons Attribution 4.0 International License.