Abstract
The shale oil revolution in the United States had an irreversible impact upon the global oil market and was a key factor determining oil price reduction in 2014-2016. One of the main reasons for the rapid growth of the shale oil production in the US was the development of extracting technologies, which reduced the cost of production to an acceptable level. This article studies the problems of long-term forecasting in shale oil production and the productivity of drilling rigs. This research applies the fitting of an asymmetric bell-shaped function using an OLS approach. This function is derived as an analytical solution of the differential equation for oil production.
Another innovation of this study is the asymmetric function, which correlates better with data on the extraction of traditional and non-traditional oil resources. An analysis of the empirical data with the derived asymmetrical bell-shaped curve shows that the productivity of drilling rigs will peak by 2026 at 1,200 bbl per day, which is 2 times higher than the current level. The peak of production would correspond to the maximum oil production of 11.3 mln bbl per day and to technically recoverable resources of 96 bln bbl. This could mean that starting from 2023, the volume of shale oil production in the US may not be enough to meet the growing global demand for oil and other resources with even higher production costs should be developed. The theoretically grounded and practically tested asymmetrical bell-shaped curve can serve as one of the tools for assessing the long-term impact of technological innovation and the growth of equipment productivity upon the development of oil production in the US in the course of Foresight studies.
References
Arps J.J. (1944) Analysis of decline curves//AIME. № 160. P. 228-247.
Baffes J., Kose, M.A., Ohnsorge F., Stocker M. (2015) The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses (PRN 15/01). Washington, D.C.: World Bank Group.
Benes J., Chauvet M., Kamenik O., Kumhof M., Laxton D., Mursula S., Selody J. (2012) The Future of Oil: Geology versus Technology (WP/12/109). Washington, D.C.: International Monetary Fund.
Bierman S., Biryukov A. (2017) Russia's Largest Oilfield May Be About to Gush Cash Once Again. Режим доступа: https://www.bloomberg.com/news/articles/2017-02-15/siberian-oil-giant-that-bankrolled-soviets-may-gush-cash-again, дата обращения 05.09.2018.
Brandt A.R. (2010) Review of mathematical models of future oil supply: Historical overview and synthesizing critique//Energy. Vol. 35. № 9. P. 3958-3974.
Clark A.J. (2011) Decline Curve Analysis in Unconventional Resource Plays Using Logistic Growth Models. Austin, TX: The University of Texas in Austin.
Coyne D. (2017) Future US Light Tight Oil (LTO) Update. Режим доступа: http://peakoilbarrel.com/future-us-light-tight-oil-lto-update/, дата обращения 05.09.2018.
Davidsen P.I., Sterman J.D., Richardson G.P. (1990) A petroleum life cycle model for the United States with endogenous technology, exploration, recovery, and demand//System Dynamics Review. Vol. 6. № 1. P. 66-93.
Denning L. (2017) Will Oil Producers Do as They Say or Do as They Sell in 2018? Режим доступа: https://www.bloomberg.com/gadfly/articles/2017-12-13/oil-producer-hedging-data-a-worry-for-opec), дата обращения 05.09.2018.
EIA (2015) World Shale Resource Assessments. Washington, D.C.: U.S. Energy Information Administration (EIA).
EIA (2016) Expected decrease in Lower 48 oil production is partially offset by rising GOM output. Режим доступа: https://www.eia.gov/todayinenergy/detail.php?id=25892#, дата обращения 05.09.2018.
EIA (2017) U.S. crude oil production forecast expected to reach record high in 2018. Режим доступа: https://www.eia.gov/todayinenergy/detail.php?id=32192, дата обращения 05.09.2018.
EIA (2018) Drilling Productivity Report (March). Washington, D.C.: U.S. Energy Information Administration (EIA).
Foster R. (1986) Innovation. The Attacker's Advantage. New York: Summit Books.
Fustier K., Gray G., Gundersen C., Hilboldt T. (2016) Global oil supply. London: HSBC Global Research.
Hotelling H. (1931) The economics of exhaustible resources//Journal of Political Economy. Vol. 39. № 2. P. 137-175.
Hoza M. (2015) The limits of high grading. Режим доступа: https://btuanalytics.com/the-limits-of-high-grading/, дата обращения 05.09.2018.
Hubbert M.K. (1956) Nuclear Energy and the Fossil Fuels Drilling and Production Practice//Proceedings of the Spring Meeting of the Southern District, Division of Production, American Petroleum Institute. San Antonio, TХ: Shell Development Company. P. 22-27.
Hughes J.D. (2016) Drilling Deeper. A Reality Check on U.S. Government Forecast for a Lasting Tight Oil & Shale Gas Boom. Santa Rosa, CA: Post Carbon Institute.
IHS (2015) Still an Adolescent, Permian's Wolfcamp Delaware Offers Promising Adulthood as E&P Operators Expand Development, IHS Says. Режим доступа: https://news.ihsmarkit.com/press-release/energy-power-media/still-adolescent-permians-wolfcamp-delaware-offers-promising-adulth, дата обращения 05.09.2018.
Kaufmann R.K., Cleveland C.J. (2001) Oil production in the lower 48 states: Economic, geological, and institutional determinants//Energy. Vol. 22. № 1. P. 27-49.
Little A.D. (1981) The Strategic Management of Technology. Cambridge, MA: Massachusetts Institute of Technology.
Mansfield E. (1968) The Economics of Technological Change. New York: W.W. Norton & Company Inc.
Montgomery J.B., O'Sullivan F.M. (2017) Spatial variability of tight oil well productivity and the impact of technology//Applied Energy. № 195. P. 344-355.
Mănescu C.B., Nuño G. (2015) Quantitative effects of the shale oil revolution//Energy Policy. № 86. P. 855-866.
Okullo S.J., Reynes F., Hofkes M.W. (2014) Modeling Peak Oil and the Geological Constraints on Oil Production. CentER Discussion Paper 2014-036. Tilburg: Tilburg University.
Richards F.J. (1959) A Flexible Growth Function for Empirical Use//Journal of Experimental Botany. № 10 (29). P. 290-300.
Rogers E. (2002) Diffusion of Innovations (5th ed.). New York: Free Press.
Rystad Energy (2016) North American Shale Report. Oslo: Rystad Energy.
Saussay A. (2018) Can the US shale revolution be duplicated in continental Europe? An economic analysis of European shale gas resources//Energy Economics. № 69. P. 295-306.
Schilling M.A., Esmundo M. (2009) Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government//Energy Policy. Vol. 37. № 5. Р. 1767-1781.
Semenychev V.K., Kurkin E.I., Semenychev E.V. (2014) Modelling and forecasting the trends of life cycle curves in the production of non-renewable resources//Energy. Vol. 75. Issue C. P. 244-251.
Sorrel S., Speirs J., Bentley R., Brandt A., Miler R. (2009) Global oil depletion. An assessment of the evidence for a near-term peak in global oil production. London: UK Energy Research Centre.
Verhulst P.F. (1838) Notice sur la loi que la population suit dans son accroissement//Correspondance mathématique et physique. Vol. 10. P. 113-121.
Афанасьев А.А. (2017) Прогнозирование добычи нефти и газового конденсата в вычислимой модели денежного обращения российской экономики//Экономика и математические методы. Т. 53. № 2. С. 50-65.
Глушенкова Е.И. (2015) Экологические последствия сланцевой революции//Запад -Восток -Россия. С. 184-189. Режим доступа: https://www.imemo.ru/files/File/magazines/Zapad_Vostok/2015/Acologosheskie%20posledstvia_Glushenkova.pdf, дата обращения 05.09.2018.
Ермолина А. (2017) Моделирование предложения традиционной нефти на основе физических и экономических факторов (магистерская диссертация). М.: РЭШ.
Жуков С.В., Золина С.А. (2017) Финансовый рынок -драйвер роста нефтедобычи в США//Экономика и организация промышленного производства. № 10 (520). С. 85-96.
Золина С.А. (2014) Прогнозирование добычи трудноизвлекаемой нефти в США. М.: ИМЭМО РАН.
Иванов Н. (2017a) Сланцы 3.0//Нефтегазовая вертикаль. № 17. С. 12-20.
Иванов Н. (2017b) Сланцевая нефть на мировом рынке: новые тенденции. Доклад для Пятой международной конференции «Глобальная энергетическая трансформация: экономика и политика», Москва, 15 декабря. Режим доступа: https://www.imemo.ru/files/File/ru/conf/2017/15122017/01_Ivanov.pdf, дата обращения 05.09.2018.
Козлов А. (2018) Моделирование добычи сланцевой нефти на основе несимметричной колоколообразной кривой (магистерская диссертация). М.: РЭШ.
Макаров A.A., Веселов Ф.В., Елисеева O.A., Кулагин В.A., Малахов В.А., Митрова T.A., Филиппов С.П., Плакиткина Л.С. (2011) Модельно-информационный комплекс SCANER. М.: ИНЭИ РАН.
Маланичев А.Г. (2017a) Дифференциальное уравнение добычи сланцевой нефти//Нефть, газ и бизнес. № 2. С. 44-49.
Маланичев А.Г. (2017b) Модели добычи сланцевой нефти в США для различных горизонтов прогнозирования//Нефть, газ и бизнес. № 3. С. 13-17.
Маланичев А.Г. (2017c) Прогноз добычи нефти на залежи Permian на основе разностного уравнения//Проблемы экономики и управления нефтегазовым комплексом. № 12. С. 40-45.
Маланичев А.Г. (2018) Прогноз добычи нефти на сланцевых месторождениях США на основе аналитических решений дифференциального уравнения с запаздывающим аргументом//Журнал Новой экономической ассоциации. № 2 (38).
Шафранник Ю.К., Крюков В.А. (2016) Нефтегазовый сектор России: трудный путь к многообразию. М.; Новосибирск; Тюмень: «Перо».

This work is licensed under a Creative Commons Attribution 4.0 International License.