Abstract
Over the past decades due to increasing economic pressure and rising demands by government and society, the organizational landscape of higher education is changing while university activities become more diversified. The focus of public support is shifting from funding current activities of universities towards rewarding outcomes. There are, as a result, many strategies to adapt and develop universities in this changing environment. For example, emerging typologies for structuring a network of higher education institutions (HEIs) taking into account their diversity are at the forefront in many countries of agendas for greater efficiency in higher education. We advance a typology for HEIs in Russia taking into account indicators of research and teaching activities. We present an overview of best practices for HEIs, some typologies, a set of indicators and mathematical tools for constructing a typology of Russian public HEIs. This typology is based on clustering the input (resource allocation) and output (performance) indicators that characterize academic and educational achievements of HEIs. The proposed classification differentiates types of universities and contains a decision tree that allows assigning universities to one category or another. It can be used as a basis for a comprehensive analysis of diverse Russian universities and for government policies to address each of the identified HEI types, depending on their characteristics.
References
Abankina I., Aleskerov F., Belousova V., Bonch-Osmolovskaya A., Petruschenko V., Ogorodniychuk D., Yakuba V., Zinkovsky K. (2012) University efficiency evaluation with using its reputational component//Proceedings of the 4th International Conference on Applied Operational Research. Bangkok: Tadbir Operational Research Group. P. 244-253.
Bartelse J., van Vught F. (2007) Institutional Profiles: Towards a Typology of Higher Education Institutions//IAU Horizons. Vol. 13. № 2-3. P. 9-11.
Bernardo A.B.I. (2003) Towards a Typology of Philippine Higher Education Institutions. Manila: Commission on Higher Education.
Calinski R., Harabasz J. (1974) A dendrite method for cluster analysis//Communications in Statistics. № 3. Р. 1-27.
Howells J., Ramlogan R., Cheng S-L. (2008) The Role, Context and Typology of Universities and Higher Education Institutions in Innovation Systems: A UK Perspective. MIoIR Discussion Paper. Manchester: University of Manchester.
McCormick C., Zhao C. (2005) Rethinking and Reframing the Carnegie Classification//Change (September-October). P. 51-57. Режим доступа: http://classifications.carnegiefoundation.org/downloads/rethinking.pdf, дата обращения 18.05.2013.
Scott P. (1995) The Meanings of Mass Higher Education. Buckingham: Open University Press.
University of Twente (2005) Institutional Profiles Towards a Typology of Higher Education Institutions in Europe. Режим доступа: http://www.utwente.nl/mb/cheps/research/projects/ceihe/publications/socratesceiheinstitutionalprofiles.pdf, дата обращения 29.04.2013.
Ward J.H., Jr. (1963) Hierarchical Grouping to Optimize an Objective Function//Journal of the American Statistical Association. Vol. 58. P. 236-244.
Абанкина И.В., Абанкина Т.В., Николаенко Е.А., Сероштан Э.С., Филатова Л. (2010) Экономическое положение вузов в условиях бюджетной реформы, повышения автономии и введения ЕГЭ. М.: ГУ-ВШЭ.
Абанкина И.В., Алескеров Ф.Т., Белоусова В.Ю., Зиньковский К.В., Петрущенко В.В. (2013) Оценка результативности университетов с помощью оболочечного анализа данных//Вопросы образования. № 2. С. 5-38.
Миркин Б.Г. (2011) Методы кластер-анализа для поддержки принятия решений: обзор. Препринт WP7/2011/03. М.: НИУ ВШЭ.
Титова Н.Л. (ред.) (2008) Стратегии развития российских вузов: ответы на новые вызовы. М.: МАКС Пресс.

This work is licensed under a Creative Commons Attribution 4.0 International License.