Abstract
Foresight projects are expected to provide realistic scenarios for different future scenarios, which provides a better information base for relevant strategies. However, these expectations often turn out to be at least difficult to fulfill due to the uncertainty of the external environment and cognitive biases. Therefore, the idea of assessing each stage of Foresight is gaining relevance, which is of particular importance in the energy sector, which affects a variety of areas of life. This article analyzes the results of the Egyptian energy foresight study, Egypt LEAPS, in terms of process efficiency and forecast accuracy as well as the factors that influenced it, including cognitive biases. The authors conclude that for each stage of foresight, a thorough analysis of weaknesses and shortcomings is necessary. Therefore, from the very beginning, the foresight process should include reliable mechanisms for assessing results and a readiness for constant iterations. Consistent process adjustments that rely on new ways of dealing with complexity and uncertainty in dealing with the future help build trust among participants and consistently reduce the level of erroneous assumptions.
References
Abdelrazik M.K., Abdelaziz S.E., Hassan M.F., Hatem T.M. (2022) Climate action: Prospects of solar energy in Africa. Energy Reports, 8, 11363-11377. DOI: https://doi.org/10.1016/j.egyr.2022.08.252
Andersen P.D., Silvast A. (2023) Experts, stakeholders, technocracy, and technoeconomic input into energy scenarios. Futures, 154, 103271s. DOI: https://doi.org/10.1016/j.futures.2023.103271
Blind K., Cuhls K., Grupp H. (2001) Personal attitudes in the assessment of the future of science and technology. A factor analysis approach. Technological Forecasting and Social Change, 68, 131-149. DOI: https://doi.org/10.1016/S0040-1625(00)00083-4
Bolger F., Wright G. (2017) Use of expert knowledge to anticipate the future: Issues, analysis and directions. International Journal of Forecasting, 33, 230-243. DOI: https://doi.org/10.1016/j.ijforecast.2016.11.001
Bradfield R.M. (2008) Cognitive barriers in the scenario development process. Advances in Developing Human Resources, 10(2), 198-215. DOI: https://doi.org/10.1177/1523422307313320
Buehler R., Griffin D., Ross M. (1994) Exploring the planning fallacy: Why people under-estimate their task completion times. Journal of Personality and Social Psychology, 67(3), 366-381. https://psycnet.apa.org/doi/. DOI: https://doi.org/10.1037/0022-3514.67.3.366
Calof J., Smith J.E. (2012) Foresight impacts from around the world. Foresight, 14(1), 5-14. DOI: https://doi.org/10.1108/14636681211214879
Carlsson M., Dahl G.B., Öckert B., Rooth D.O. (2015) The Effect of Schooling on Cognitive Skills. The Review of Economics and Statistics, 97(3), 533-547. https://www.jstor.org/stable/43554993.
Chanchangi Y.N., Ghosh A., Sundaram S., Mallick T.K. (2020) Dust and PV performance in Nigeria: A review. Renewable and Sustainable Energy Reviews, 121, 109704. DOI: https://doi.org/10.1016/j.rser.2020.109704
Chen Y., Zhao J., Lai Z., Wang Z., Xia H. (2019) Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China's CO2 emissions: Evidence from a regional panel analysis. Renewable Energy, 140, 341-353. DOI: https://doi.org/10.1016/j.renene.2019.03.058
Chermack T.J., Nimon K. (2008) The effects of scenario planning on participant decision-makingstyle. Human Resources Development Quarterly, 19(4), 351-372. DOI: https://doi.org/10.1002/hrdq.1245
Cuhls K. (2003) From forecasting to foresight processes - new participative foresight activities in Germany. Journal of Forecasting, 22(2-3), 93-111. DOI: https://doi.org/10.1002/for.848
Dagnachew A.G., Hof A.F., Roelfsema M.R., van Vuuren D.P. (2020) Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa. Energy Policy, 143, 111572. DOI: https://doi.org/10.1016/j.enpol.2020.111572
Del Granado P.C., Renger H., van Nieuwkoop, Kardakos E.G., Schaffner C. (2018) Modelling the energy transition: A nexus of energy system and economic models. Energy Strategy Reviews, 20, 229-235. DOI: https://doi.org/10.1016/j.esr.2018.03.004
Ebersbach M., van Dooren W., van den Noorgate W., Resing W.C.M. (2008) Understanding linear and exponential growth: Searching for the roots in 6-to-9 year olds. Cognitive Development, 23, 237-257. DOI: https://doi.org/10.1016/j.cogdev.2008.01.001
European Commission (2016) EU reference scenario 2016 - Energy, transport and GHG emissions trends to 2050, Brussels: European Commission.
Feld J., Sauermann J., de Grip A. (2017) Estimating the relationship between skill and overconfidence. Journal of Behavioral and Experimental Economics, 68, 18-24. DOI: https://doi.org/10.1016/j.socec.2017.03.002
Fleisher C.S., Bensoussan B. (2000) A FAROUT way to manage CI Analysis. Competitive Intelligence Magazine, 3(1), 1-8.
Fraunhofer ISI (2014) Optimized pathways towards ambitious climate protection in the European electricity system (EU Long-term scenarios 2050 II), Karlsruhe: Fraunhofer Institute for Systems and Innovation Research.
Galvin R., Healy N. (2020) The green new deal in the United States: What it is and how to pay for it. Energy Research & Social Science, 67, 101529. DOI: https://doi.org/10.1016/j.erss.2020.101529
Georghiou L., Cassingena Harper J., Keenan M., Miles I., Popper R. (eds.) (2008) The Handbook of Technology Foresight. Concepts and Practice, Cheltenham: Edward Elgar.
Georghiou L., Keenan V. (2006) Evaluation of national foresight activities: Assessing rationale, process and impact. Technological Forecasting and Social Change, 73(7), 761-777. DOI: https://doi.org/10.1016/j.techfore.2005.08.003
Giaoutzi M., Sapio B. (2012) Recent Developments in Foresight Methodologies, Heidelberg, Dordrecht, London, New York: Springer.
Göke L., Weibezahn J., von Hirschhausen C. (2023) A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios. Energy Research & Social Science, 97, 102957. DOI: https://doi.org/10.1016/j.erss.2023.102957
Golden J., Milewicz J., Herbig P. (1994) Forecasting: Trials and tribulations. Management Decision, 32(1), 33-36. DOI: https://doi.org/10.1108/00251749410050642
Guivarch C., Lempert R., Trutnevyte E. (2017) Scenario techniques for energy and environmental research: An overview of recent developments to broaden the capacity to deal with complexity and uncertainty. Environmental Modelling and Software, 97, 201-210. DOI: https://doi.org/10.1016/j.envsoft.2017.07.017
Hainsch K., Loffler K., Burandt T., Auer H., del Granado P.C., Pisciella P., Zwickl-Bernhard S. (2022) Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?, Energy, 239, 122067. DOI: https://doi.org/10.1016/j.energy.2021.122067
Hawila D., Mondal A.H., Kennedy S., Mezher T. (2014) Renewable energy readiness assessment for North African countries. Renewable and Sustainable Energy Reviews, 33, 128-140. DOI: https://doi.org/10.1016/j.rser.2014.01.066
Hogarth R.M. (1980) Judgment and Choice. The Psychology of Decision, NewYork: Wiley.
Hogarth R.M., Makridakis S. (1981) Forecasting and planning: An evaluation. Management Science, 27(2), 115-138. DOI: https://doi.org/10.1287/mnsc.27.2.115
Huard A., Fremaux B. (2020) Bright Perspectives for Solar Power in Africa?, Paris: Institut Montaigne.
IEA (2022) World Energy Outlook 2022, Paris: IEA.
IPCC (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge (UK), New York: Cambridge University Press.
IRENA (2018) Renewable Energy Outlook: Egypt, Abu Dhabi: International Renewable Energy Agency.
IRENA (2021) Renewable Capacity Statistics 2021, Abu Dhabi: International Renewable Energy Agency.
Kahneman D., Slovic P., Tversky A. (1982) Judgment under Uncertainty: Heuristics and Biases, Cambridge: Cambridge University Press.
Kahneman D., Tversky A. (1979) Intuitive prediction: Biases and corrective procedures. TIMS Studies in Management Science, 12, 313-327.
Kimuli D., Nabaterega R., Banadda N., Kabenge I., Ekwamu A., Nampala P. (2017) Advanced education and training programs to support renewable energy investment in Africa. International Journal of Education and Practice, 5, 8-15. DOI: https://doi.org/10.18488/journal.61/2017.5.1/61.1.8.15
Knosala K., Kotzur L., Röben F.T., Stenzel P., Blum L., Robinius M., Stolten D. (2021) Hybrid hydrogen home storage for decentralized energy autonomy. International Journal of Hydrogen Energy, 46(42), 21748-21763,. DOI: https://doi.org/10.1016/j.ijhydene.2021.04.036
Ko B.K., Yang J.-S. (2024) Developments and challenges of foresight evaluation: Review of the past 30 years of research. Futures, 155, 103291. DOI: https://doi.org/10.1016/j.futures.2023.103291
Levy M.R., Tasoff J. (2016) Exponential-growth bias and lifecycle consumption. Journal of the European Economic Association, 14(3), 545-583. https://www.jstor.org/stable/43965317.
Levy M.R., Tasoff J. (2017) Exponential-growth bias and overconfidence. Journal of Economic Psychology, 58, 1-14. DOI: https://doi.org/10.1016/j.joep.2016.11.001
Lichtenstein S., Fischhoff B. (1977) Do those who know more also know more about how much they know? The calibration of probability judgments. Organizational Behavior and Human Performance, 20, 159-183. DOI: https://doi.org/10.1016/0030-5073(77)90001-0
Linstone H.A., Turoff M. (1976) The Delphi Method: Techniques and Applications. Journal of Marketing Research, 13(3), 317-318. DOI: https://doi.org/10.2307/3150755
Luo H., Lin X. (2023) Empirical Study on the Low-Carbon Economic Efficiency in Zhejiang Province Based on an Improved DEA Model and Projection. Energies, 16, 300. DOI: https://doi.org/10.3390/en16010300
Markmann C., Spickermann A., von der Gracht H.A., Brem A. (2021) Improving the question formulation in Delphi-like surveys: Analysis of the effects of abstract language and amount of information on response behavior. Futures & Foresight Science, 3(1), 1-20. DOI: https://doi.org/10.1002/ffo2.56
Martino J.P. (2003) A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70, 719-733. DOI: https://doi.org/10.1016/S0040-1625(02)00375-X
Meissner Ph., Wulf T. (2013) Cognitive benefits of scenario planning: Its impact on biases and decision quality. Technological Forecasting and Social Change, 80, 801-814. DOI: https://doi.org/10.1016/j.techfore.2012.09.011
Minkkinen M., Auffermann B., Ahokas I. (2019) Six foresight frames: Classifying policy foresight processes in foresight systems according to perceived unpredictability and pursued change. Technological Forecasting and Social Change, 149, 119753. DOI: https://doi.org/10.1016/j.techfore.2019.119753
Moore D.A., Carter A.B., Yang H.H.J. (2015) Wide off the mark. Evidence on the underlying causes of overprecision in judgment. Organizational Behavior and Human Decision Processes, 131, 110-120. DOI: https://doi.org/10.1016/j.obhdp.2015.09.003
Nemet G.F. (2021) Improving the crystal ball. Nature Energy, 6, 860-861. DOI: https://doi.org/10.1038/s41560-021-00903-9
Newby-Clark I.R., Ross M., Buehler R., Griffin D.W. (2000) People focus on optimistic scenarios and disregard pessimistic scenario when predicting task completion times. Journal of Experimental Psychology Applications, 6(3), 171-182. DOI: https://doi.org/10.1037/1076-898x.6.3.171
Nwanekezie K., Noble B., Poelzer G. (2022) Strategic assessment for energy transitions: A case study of renewable energy development in Saskatchewan, Canada. Environmental Impact Assessment Review, 92, 106688. DOI: https://doi.org/10.1016/j.eiar.2021.106688
Othman R., Hatem T.M. (2022) Assessment of PV technologies outdoor performance and commercial software estimation in hot and dry climates. Journal of Cleaner Production, 340, 130819. DOI: https://doi.org/10.1016/j.jclepro.2022.130819
Paltsev S. (2017) Energy scenarios: The value and limits of scenario analysis. WIREs: Energy and Environment, 6(4), e242. DOI: https://doi.org/10.1002/wene.242
Rezk M.R., Radwan A., Salem N., Sakr M.M., Tvaronavičienė M. (2019) Foresight for sustainable energy policy in Egypt: Results from a Delphi survey. Insights into Regional Development, 1(4), 357-369. DOI: https://doi.org/10.9770/ird.2019.1.4(6)
Riedy C. (2009) The influence of futures work on public policy and sustainability. Foresight, 11, 40-56. DOI: https://doi.org/10.1108/14636680910994950
Rubio A., Agila W., González L., Ramirez M., Pineda H. (2023) A Critical Analysis of the Impact of the Pandemic on Sustainable Energy Scenarios. Paper presented at the 11th International Conference on Smart Grid (icSmartGrid), Paris, France, 2023. DOI: https://doi.org/10.1109/icSmartGrid58556.2023.10171066
Sareen S., Haarstad H. (2018) Bridging socio-technical and justice aspects of sustainable energy transitions. Applied Energy, 228, 624-632. DOI: https://doi.org/10.1016/j.apenergy.2018.06.104
Schoemaker P.J.H. (1993) Multiple scenario development: Its conceptual and behavioral foundations. Strategic Management Journal, 14, 193-213. https://www.jstor.org/stable/2486922.
Sharot T., Guitart-Masip M., Korn C.W., Chowdhury R., Dolan R.J. (2012) How Dopamine Enhances an Optimism Bias in Humans. Current Biology, 22(16), 1477-1481. DOI: https://doi.org/10.1016/j.cub.2012.05.053
Stern D.I. (2017) How accurate are energy intensity projections? Climatic Change, 143(3), 537-545. DOI: https://doi.org/10.1007/s10584-017-2003-3
Tichy G. (2004) The over-optimism among experts in assessment and foresight. Technological Forecasting and Social Change, 71(4), 341-363. DOI: https://doi.org/10.1016/j.techfore.2004.01.003
Trutnevyte E. (2016) Does cost optimization approximate the real-world energy transition? Energy, 106, 182-193. DOI: https://doi.org/10.1016/j.energy.2016.03.038
UNIDO (2004) Foresight Methodologies Textbook, Wien: UNIDO.
Van der Steen M., van der Duin P. (2012) Learning ahead of time: How evaluation of foresight may add to increased trust, organizational learning and future oriented policy and strategy.Futures, 44 (5), 487-493. DOI: https://doi.org/10.1016/j.futures.2012.03.010
Van der Steen M.A., van Twist M.J.W. (2013) Foresight and long-term policy-making: An analysis of anticipatory boundary work in policy organizations in the Netherlands. Futures, 54, 33-42. DOI: https://doi.org/10.1016/j.futures.2013.09.009
Van Dorsser C., Taneja P., Walker W., Marchau V. (2020) An integrated framework for anticipating the future and dealing with uncertainty in policymaking. Futures, 124, 102594. DOI: https://doi.org/10.1016/j.futures.2020.102594
Vervoort J., Gupta A. (2018) Anticipating climate futures in a 1.5◦C era: The link between foresight and governance. Current Opinion in Environmental Sustainability, 31, 104-111. DOI: https://doi.org/10.1016/j.cosust.2018.01.004
Videira N., Antunes P., Santos R. (2009) Scoping river basin management issues with participatory modelling: The Baixo Guadiana experience. Ecological Economics, 68, 965-978. DOI: https://doi.org/10.1016/j.ecolecon.2008.11.008
Winkler J., Moser R. (2016) Biases in future-oriented Delphi studies: A cognitive perspective. Technological Forecasting and Social Change, 105(C), 63-76. DOI: https://doi.org/10.1016/j.techfore.2016.01.021
Wright G., Goodwin P. (2009) Decision making and planning under low levels of predictability. Enhancing the scenario method. International Journal of Forecasting, 25(4), 813-825. DOI: https://doi.org/10.1016/j.ijforecast.2009.05.019

This work is licensed under a Creative Commons Attribution 4.0 International License.