Determinants of Research Productivity: An Individual-level Lens
PDF (Русский)
PDF

Keywords

bibliometric indicators
human capital
performance-based payment
Russian scholars
the productivity of science
scientific publications

How to Cite

FursovK., RoshinaY., & BalmushO. (2016). Determinants of Research Productivity: An Individual-level Lens. Foresight and STI Governance, 10(2), 44-56. https://doi.org/10.17323/1995-459X.2016.2.44.56

Abstract

The continuous growth of investment in R&D in Russia and the world increases the demand for optimal allocation of public funds to support the most productive scientific performers. These are, however, hard to conceptualize and measure. First, we need to consider the nature of research activity itself and, second, we need to evaluate a number of factors that influence such activities at the national, institutional and individual levels. One of the key issues is motivation of academic personnel, who are considered to be the main producers of new knowledge. Therefore, it is necessary to analyse the employment characteristics of researchers, and develop adequate mechanisms to facilitate their scientific productivity.This paper aims to examine determinants of publication activity among doctorate holders employed in an academic sector in Russia. Data for the analysis was derived from a survey on the labour market for highly qualified R&D personnel conducted in 2010 by the HSE, within the framework of the OECD / UNESCO Institute for Statistics / Eurostat international project on Careers of Doctorate Holders (CDH). With the use of regression analysis, we assess the effects of scientific capital, international cooperation, employment, and socio-demographic characteristics of researchers on their productivity, which is measured through their total publication output as well as through the number of papers in peer-reviewed academic journals.The differences between factors were assessed for two generations of researchers – below 40 years old, and above. It was shown that the quality of scientific capital, measured through diversity of research experience, has a stronger impact on research productivity, rather than the age or other socio-demographic characteristics of doctorate holders. It was also demonstrated that direct economic stimuli and actual research productivity of researchers are weakly correlated. Consequently, we identified that a potentially winning strategy for universities and research institutions that want to improve their performance indicators would be to provide younger scholars with wider opportunities for professional growth, including intense global cooperation in the professional community.
https://doi.org/10.17323/1995-459X.2016.2.44.56
PDF (Русский)
PDF

References

Ancaiani A., Anfossi A.F., Barbara A., Benedetto S., Blasi B., Carletti V., Sileoni S. (2015) Evaluating scientific research in Italy: The 2004-10 research evaluation exercise // Research Evaluation. Vol. 24. № 3. Р. 242-255.

Ball P. (2005) Index aims for fair ranking of scientists // Nature. № 436. P. 900-900.

Becker G. (1964) Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: The University of Chicago.

Bordons M., Fernández M.T., Gómez I. (2002) Advantages and limitations in the use of impact factor measures for the assessment of research performance in a peripheral country // Scientometrics. Vol. 53. № 2. Р. 195-206.

Carayol N., Matt M. (2006) Individual and collective determinants of academic scientists' productivity // Information Economics and Policy. Vol. 18. № 1. Р. 55-72.

Cole J.R., Zuckerman H. (1984) The Productivity Puzzle: Persistence and change in patterns of publication among men and women scientists // Advances in Motivation and Achievement / Eds. M.W. Steimkamp, M. Maehr. Vol. 2. Greenwich, CT: JAI Press.

De Bellis N. (2009) Bibliometrics and citation analysis: From the Science citation index to cybermetrics. Lanham, Toronto, Plymouth: Scarecrow Press.

Fox M.F. (2005) Gender, family characteristics, and publication productivity among scientists // Social Studies of Science. Vol. 35. № 1. Р. 131-150.

Garfield E. (2009) From the Science of Science to Scientometrics: Visualizing the History of Science with HistCite Software // Journal of Informetrics. Vol. 3. № 3. P. 173-179.

Godin B. (2006) On the origins of bibliometrics // Scientometrics. Vol. 68. № 1. Р. 109-133.

Godin B. (2013) Measurement and Statistics on Science and Technology: 1920 to the Present. London: Routledge.

Godin B., Gingras Y. (2000) What is scientific and technological culture and how is it measured? A multidimensional model // Public Understanding of Science. № 9. P. 43-58.

Hermanowicz J.C. (2006) What Does It Take to Be Successful? // Science, Technology, and Human Values. Vol. 31. № 2. Р. 135-152.

Hesli V.L., Lee J.M. (2011) Faculty research productivity: Why do some of our colleagues publish more than others? // PS: Political Science and Politics. Vol. 44. № 2. Р. 393-408.

Hicks D. (2012) Performance-based university research funding system // Research Policy. № 41. Р. 251-261.

Hicks D., Wouters P., Waltman L., De R., Rafols I. (2015) Bibliometrics: The Leiden Manifesto for research metrics // Nature. Vol. 520. № 7548. Р. 429-431.

Katchanov Y.L., Shmatko N.A. (2014) Complexity-Based Modeling of Scientific Capital: An Outline of Mathematical Theory // International Journal of Mathematics and Mathematical Sciences. Vol. 2014. Article ID 785058. Режим доступа: http://www.hindawi.com/journals/ijmms/2014/785058/, дата обращения 03.03.2016.

Lee S., Bozeman B. (2005) The Impact of Research Collaboration on Scientific Productivity // Social Studies of Science. Vol. 35. № 5. Р. 673-702.

Merton R.K. (1968) The Matthew Effect in Science // Science. Vol. 159. № 3810. Р. 56-63.

Merton R.K. (1973) The Sociology of Science: Theoretical and Empirical Investigations. Chicago: University of Chicago Press.

Merton R.K. (1988) The Matthew Effect in Science, II: Cumulative Advantage and the Symbolism of Intellectual Property // Isis. Vol. 79. № 4. Р. 606-623.

Moed H.F. (2009) New developments in the use of citation analysis in research evaluation // Archivum Immunologiae et Therapiae Experimentalis. № 57. Р. 13-18.

OECD (2014) OECD Science, Technology and Industry Outlook 2014. Paris: OECD.

Silman F. (2014) Work-related basic need satisfaction as a predictor of work engagement among academic staff in Turkey // South African Journal of Education. Vol. 34. № 3. P. 1-5.

Stephan P. (2012) Research efficiency: Perverse incentives // Nature. Vol. 484. № 7392. P. 29-31.

Weingart P. (2005) Impact of bibliometrics upon the science system: Inadvertent consequences? // Scientometrics. № 62. Р. 117-131.

Володарская Е.А., Киселева В.В. (2012) Оплата труда ученых и мотивация научной деятельности // Мотивация и оплата труда. № 2. С. 154-167.

Гершман М.А., Кузнецова Т.Е. (2013) Эффективный контракт в науке: параметры и модели // Форсайт. Т. 7. № 3. С. 26-36.

Годэн Б. (2009) Что такое наука? Развитие статистического определения: 1920-2000 // Форсайт. Т. 3. № 2. С. 48-60.

Гохберг Л.М., Заиченко С.А., Китова Г.А., Кузнецова Т.Е. (2011) Научная политика: глобальный контекст и российская практика. М.: НИУ ВШЭ.

Кирчик О.И. (2011) «Незаметная» наука. Паттерны интернационализации российских научных публикаций // Форсайт. Т. 5. № 3. С. 34-42.

Кузнецова И.А., Кузнецова Т.Е., Мартынова С.В., Суслов А.Б. (2015) Оценка материально-технической базы науки: вопросы классификации научного оборудования // Российские нанотехнологии. Т. 10. № 11-12. С. 13-21.

НИУ ВШЭ (2011) Российский инновационный индекс / Под ред. Л.М. Гохберга. М.: НИУ ВШЭ.

НИУ ВШЭ (2016) Индикаторы науки 2016: Статистический сборник. М.: НИУ ВШЭ.

Рощина Я.М., Юдкевич М.М. (2009) Факторы исследовательской деятельности преподавателей вузов: политика администрации, контрактная неполнота или влияние среды? // Вопросы образования. № 3. С. 203-228.

Рудь В.А., Фурсов К.С. (2011) Роль статистики в дискуссии о научно-технологическом и инновационном развитии // Вопросы экономики. № 1. С. 120-133.

Суслов А.Б. (2010) Планирование научной карьеры: взгляд сквозь призму социологического обследования // Вопросы статистики. № 8. С. 35-41.

Фурсов К.С. (2015) Россия в глобальной науке: результаты библиометрического анализа // Науковедческие исследования. Ежегодник: Сб. научн. тр. М.: ИНИОН РАН. С. 61-80.

Шматко Н.А. (2011) Научный капитал как драйвер социальной мобильности ученых // Форсайт. Т. 5. № 3. С. 18-32.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.