Reconfiguring the Battery Innovation Landscape
PDF (Русский)
PDF

Keywords

innovation
technological trajectory
secondary batteries
patent data

How to Cite

SilvaJ., TávoraG., & MendonçaS. (2023). Reconfiguring the Battery Innovation Landscape. Foresight and STI Governance, 17(1), 34-50. https://doi.org/10.17323/2500-2597.2023.1.34.50

Abstract

The development of battery technologies is critical for energy transition strategies. This paper offers a comprehensive assessment of the trends and developments of battery innovation. Over 700,000 patents from the period of 2005-2019 are compiled and analyzed. Leading patent applicants and countries of origin are identified. Major patent applicants are mostly large East Asian companies, while Japan and South Korea are the leading countries followed by the US, Germany, and China. Different battery designs, the main battery components, and interactions with other clean technologies are examined. Based on the operative definitions for incremental/radical and product/process innovations, a battery innovation typology is set forth. The main findings are that patenting in batteries rises robustly and the lithium-ion battery is the most vibrant technology; lithium-sulfur and flow batteries are the most notable emerging technologies, while electrodes are the most salient battery component. The most significant interactions of batteries with clean energy technologies are between battery charging and photovoltaic energy as well as between battery charging and electric vehicles. Incremental innovation represents more than half of the patents, while product innovation represents approximately 70% of the total patents. This study presents findings that could be useful when making investment decisions on the development of battery and auxiliary low-carbon energy technologies.

https://doi.org/10.17323/2500-2597.2023.1.34.50
PDF (Русский)
PDF

References

Aaldering L.J., Song C.H. (2019) Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach. Journal of Cleaner Production, 241, 118343. DOI: https://doi.org/10.1016/j.jclepro.2019.118343

Albertsen L., Richter J.L., Peck P., Dalhammar C., Plepys A. (2021) Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resources, Conservation and Recycling, 172, 105658. DOI: https://doi.org/10.1016/j.resconrec.2021.105658

Albino V., Ardito L., Dangelico R.M., Messeni-Petruzzelli A. (2014) Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836-854. DOI: https://doi.org/10.1016/j.apenergy.2014.08.012

Azzuni A., Breyer C. (2018) Energy security and energy storage technologies. Energy Procedia, 155, 237-258. DOI: https://doi.org/10.1016/j.egypro.2018.11.053

Barnhart C.J., Dale M., Brandt A.R., Benson S.M. (2013) The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy & Environmental Science, 6(10), 2804. DOI: https://doi.org/10.1039/c3ee41973h

Bathelt H., Cohendet P., Henn S., Simon L. (2017) The Elgar Companion to Innovation and Knowledge Creation, Cheltenham: Edward Elgar. DOI: https://doi.org/10.4337/9781782548522

Bergek A., Berggren C. (2014) The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies. Ecological Economics, 106, 112-123. DOI: https://doi.org/10.1016/j.ecolecon.2014.07.016

Berndt D. (2003) Electrochemical Energy Storage. In: Battery Technology Handbook (ed. H.A. Kiehne) (2nd ed.), New York: CRS Publisher, pp. 1-99.

Caraça J., Lundvall B.-A., Mendonça S. (2009) The changing role of science in the innovation process: From Queen to Cinderella?. Technological Forecasting and Social Change, 76(6), 861-867. DOI: https://doi.org/10.1016/j.techfore.2008.08.003

Castaldi C., Frenken K., Los B. (2015) Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting. Regional Studies, 49(5), 767-781. DOI: https://doi.org/10.1080/00343404.2014.940305

Castellacci F., Grodal S., Mendonca S., Wibe M. (2005) Advances and challenges in innovation studies. Journal of Economic Issues, 39(1), 91-121. DOI: https://doi.org/10.1080/00213624.2005.11506782

Castillo A., Gayme D.F. (2014) Grid-scale energy storage applications in renewable energy integration: A survey. Energy Conversion and Management, 87, 885-894. DOI: https://doi.org/10.1016/j.enconman.2014.07.063

Chen K., Hou J., Song M., Wang S., Wu W., Zhang Y. (2021) Design of battery thermal management system based on phase change material and heat pipe. Applied Thermal Engineering, 188, 116665. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116665

Criscuolo P. (2006) The home advantage effect and patent families. A comparison of OECD triadic patents, the USPTO and the EPO. Scientometrics, 66, 23-41. DOI: https://doi.org/10.1007/s11192-006-0003-6

Dehghani-Sanij A.R., Tharumalingam E., Dusseault M.B., Fraser R. (2019) Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104, 192-208. DOI: https://doi.org/10.1016/j.rser.2019.01.023

Diesendorf M., Wiedmann T. (2020) Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity. Ecological Economics, 176, 106726. DOI: https://doi.org/10.1016/j.ecolecon.2020.106726

Ding H., Hu Z., Song Y. (2012) Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant. Renewable Energy, 48, 571-578. DOI: https://doi.org/10.1016/j.renene.2012.06.008

Dodgson M., Gann D.M., Salter A. (2008) The management of technological innovation: Strategy and practice (2nd ed.), Oxford: Oxford University Press.

Dosi G. (1982) Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147-162. DOI: https://doi.org/10.1016/0048-7333(82)90016-6

Dziallas M., Blind K. (2019) Innovation indicators throughout the innovation process: An extensive literature analysis. Technovation, 80-81, 3-29. DOI: https://doi.org/10.1016/j.technovation.2018.05.005

Fagerberg J. (2004) Innovation: A guide to the literature. In: The Oxford Handbook of Innovation (eds. J. Fagerberg, D.C. Mowery), Oxford: Oxford University Press, pp. 1-16.

Fagerberg J., Laestadius S., Martin B.R. (2016) The Triple Challenge for Europe: The Economy, Climate Change, and Governance. Challenge, 59(3), 178-204. DOI: https://doi.org/10.1080/05775132.2016.1171668

Feng S., Magee C.L. (2020) Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Applied Energy, 260, 114264. DOI: https://doi.org/10.1016/j.apenergy.2019.114264

Golembiewski B., Vom Stein N., Sick N., Wiemhöfer H.D. (2015) Identifying trends in battery technologies with regard to electric mobility: Evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 87, 800-810. DOI: https://doi.org/10.1016/j.jclepro.2014.10.034

Hansen A.R., Jacobsen M.H., Gram-Hanssen K. (2022) Characterizing the Danish energy prosumer: Who buys solar PV systems and why do they buy them?. Ecological Economics, 193, 107333. DOI: https://doi.org/10.1016/j.ecolecon.2021.107333

Hesse K., Fornahl D. (2020) Essential ingredients for radical innovations? The role of (un-) related variety and external linkages in Germany. Papers in Regional Science, 99(5), 1165-1183. DOI: https://doi.org/10.1111/pirs.12527

Hirsh H.S., Li Y., Tan D.H.S., Zhang M., Zhao E., Meng Y.S. (2020) Sodium-Ion Batteries Paving the Way for Grid Energy Storage. Advanced Energy Materials, 10(32), 2001274. DOI: https://doi.org/10.1002/aenm.202001274

Hung S.C., Lai J.Y., Liu J. S. (2022) Mapping technological trajectories as the main paths of knowledge flow: Evidence from printers. Industrial and Corporate Change, 31(3), 863-889. DOI: https://doi.org/10.1093/icc/dtab072

IEA (2008) Energy Policies of IEA Countries: Japan 2008 Review. Review Literature and Arts of the Americas, Paris: IEA. https://www.iea.org/reports/energy-policies-of-iea-countries-japan-2008, дата обращения 15.01.2023.

IEA (2020a) Energy Storage, Paris: IEA. https://www.iea.org/reports/energy-storage, дата обращения 15.01.2023.

IEA (2020b) Energy Technology Perspectives 2020, Paris: IEA. https://www.iea.org/reports/energy-technology-perspectives-2020IEA, дата обращения 15.01.2023.

IEA (2021a) Global Energy Review 2021, Paris: IEA. https://www.iea.org/reports/global-energy-review-2021, дата обращения 15.01.2023.

IEA (2021b) The Role of Critical Minerals in Clean Energy Transitions - Analysis, Paris: IEA. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions, дата обращения 15.01.2023.

IEA (2022) World Energy Review 2022, Paris: IEA. https://iea.blob.core.windows.net/assets/9d0a2db4-965a-4e80-83da-562f038ff514/WorldEnergyOutlook2022.pdf, дата обращения 15.01.2023.

IEA, EPO (2020) Innovation in Batteries and Electricity Storage, Paris: IEA, EPO. https://www.iea.org/reports/innovation-in-batteries-and-electricity-storage, дата обращения 15.01.2023.

IEA, EPO (2021) Patents and the Energy Transition, Paris: IEA, EPO. https://www.iea.org/reports/patents-and-the-energy-transition, дата обращения 15.01.2023.

IPCC (2021) Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva: IPCC, https://www.ipcc.ch/assessment-report/ar6/, дата обращения 15.01.2023.

Jeong E., Mah J.S. (2022) The Role of the Government in the Development of the Rechargeable Battery Industry in Korea. Perspectives on Global Development and Technology, 21(2), 1569-1500. DOI: https://doi.org/10.1163/15691497-12341625

Jesus A., Mendonça S. (2018) Lost in Transition? Drivers and Barriers in the Eco-innovation Road to the Circular Economy. Ecological Economics, 145, 75-89. DOI: https://doi.org/10.1016/j.ecolecon.2017.08.001

Jindal A., Shrimali G. (2022) At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies. Technological Forecasting and Social Change, 176, 121467. DOI: https://doi.org/10.1016/j.techfore.2021.121467

Katila R. (2000) Using patent data to measure innovation performance. International Journal of Business Performance Management, 2, 180-193. DOI: https://doi.org/10.1504/IJBPM.2000.000072

Kim J., Lee S. (2015) Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change, 92, 332-345. DOI: https://doi.org/10.1016/j.techfore.2015.01.009

Kim J.G., Son B., Mukherjee S., Schuppert N., Bates A., Kwon O., Choi M.J., Chung H.Y., Park S. (2015) A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 282, 299-322. DOI: https://doi.org/10.1016/j.jpowsour.2015.02.054

Kittner N., Lill F., Kammen D.M. (2017) Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2(9), 17125. DOI: https://doi.org/10.1038/nenergy.2017.125

Lee K., Lee S. (2013) Patterns of technological innovation and evolution in the energy sector: A patent-based approach. Energy Policy, 59, 415-432. DOI: https://doi.org/10.1016/j.enpol.2013.03.054

Lehmann C., Cruz-Jesus F., Oliveira T., Damásio B. (2022) Leveraging the circular economy: Investment and innovation as drivers. Journal of Cleaner Production, 360, 132146. DOI: https://doi.org/10.1016/j.jclepro.2022.132146

Leiponen A. (2014) Intellectual Property Rights, Standards, and the Management of Innovation. In: The Oxford Handbook of Innovation Management (eds. M. Dodgson, D.M. Gann, N. Phillips), Oxford: Oxford University Press, pp. 559-578. DOI: https://doi.org/10.1093/oxfordhb/9780199694945.013.020

Levänen J., Lyytinen T., Gatica S. (2018) Modelling the Interplay Between Institutions and Circular Economy Business Models: A Case Study of Battery Recycling in Finland and Chile. Ecological Economics, 154, 373-382. DOI: https://doi.org/10.1016/j.ecolecon.2018.08.018

Lhuillery S., Raffo J., Hamdan-Livramento I. (2017) Measurement of innovation. In: The Elgar Companion to Innovation and Knowledge Creation (eds. H. Bathelt, P. Cohendet, S. Henn, L. Simon), Cheltenham: Edward Elgar. DOI: https://doi.org/10.4337/9781782548522.00013

Lu M., Zhang X., Ji J., Xu X., Zhang Y. (2020) Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27, 101155. DOI: https://doi.org/10.1016/j.est.2019.101155

Malhotra A., Zhang H., Beuse M., Schmidt T. (2021) How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology. Research Policy, 50(9), 104318. DOI: https://doi.org/10.1016/j.respol.2021.104318

Martínez C. (2011) Patent families: When do different definitions really matter? Scientometrics, 86(1), 39-63. DOI: https://doi.org/10.1007/s11192-010-0251-3

May G.J., Davidson A., Monahov B. (2018) Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. DOI: https://doi.org/10.1016/j.est.2017.11.008

McKelvey M. (2014) Science, Technology, and Business Innovation. In: The Oxford Handbook of Innovation Management (eds. M. Dodgson, D.M. Gann, N. Phillips), Oxford: Oxford University Press, pp. 69-82. DOI: https://doi.org/10.1093/oxfordhb/9780199694945.013.029

Mei W., Chen H., Sun J., Wang Q. (2019) The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model. Sustainable Energy and Fuels, 3(1), 148-165. DOI: https://doi.org/10.1039/c8se00503f

Mendonça S., Confraria H., Godinho M.M. (2021) Appropriating the returns of patent statistics: Take-up and development in the wake of Zvi Griliches (SWPS Paper 2021-07). DOI: https://doi.org/10.2139/ssrn.3971764

Mendonça S., Schmoch U., Neuhäusler P. (2019) Interplay of patents and trademarks as tools in economic competition. In: Springer Handbook of Science and Technology Indicators (eds. W. Glänzel, H.F. Moed, U. Schmoch, M. Thelwall), Berlin: Springer, pp. 1023-1035.

Metzger P., Mendonça S.J., Damásio B. (2023) Battery Innovation and the Circular Economy: What are Patents Revealing? Renewable Energy (forthcoming).

Nagaoka S., Motohashi K., Goto A. (2010) Patent statistics as an innovation indicator. In: Handbook of the Economics of Innovation (vol. 2) (eds. B.H. Hall, N. Rosenberg), Amsterdam: Elsevier, pp. 1083-1127. DOI: https://doi.org/10.1016/S0169-7218(10)02009-5

Nelson R.R., Dosi G., Helfat C.E., Pyka A., Saviotti P.P., Lee K., Dopfer K., Malerba F., Winter S.G. (2018) Modern Evolutionary Economics: An Overview, Cambridge: Cambridge University Press.

Patel P., Pavitt K. (2005) Patterns of Technological Activity: Their Measurement and Interpretation. In: Handbook of the Economics of Innovation and Technical Change (ed. P. Stoneman), Oxford: Blackwell, pp. 14-51.

Prencipe A., Davies A., Hobday M. (2005) The Business of Systems Integration (1st ed.), Oxford: Oxford University Press. DOI: https://doi.org/10.1093/0199263221.001.0001

Schot J., Steinmueller W.E. (2019) Transformative change: What role for science, technology and innovation policy?: An introduction to the 50th Anniversary of the Science Policy Research Unit (SPRU) Special Issue. Research Policy, 48(4), 843-848. DOI: https://doi.org/10.1016/j.respol.2018.12.005

Schulz C., Martin-Ortega J., Ioris A.A.R., Glenk K. (2017) Applying a Value Landscapes Approach to Conflicts in Water Governance: The Case of the Paraguay-Paraná Waterway. Ecological Economics, 138, 47-55. DOI: https://doi.org/10.1016/j.ecolecon.2017.03.033

Shapiro M.A. (2020) Next-generation battery research and development: Non-politicized science at the Joint Center for Energy Storage Research. Energy Policy, 145, 111771. DOI: https://doi.org/10.1016/j.enpol.2020.111771

Silva J.A., Oliveira S., Távora G., Mendonça S. (2015) The role of innovation in the future PV and storage markets. In: Proceedings 31st European PVSEC, pp. 3183-3186. DOI: https://doi.org/10.4229/EUPVSEC20152015-7DV.4.41

Smith K. (2006) Measuring Innovation. In: The Oxford Handbook of Innovation. (eds. J. Fagerberg, D.C. Mowery), Oxford: Oxford University Press, pp. 148-179. DOI: https://doi.org/10.1093/oxfordhb/9780199286805.003.0006

Sovacool B.K., Hess D.J., Amir S., Geels F.W., Hirsh R., Rodriguez-Medina L., Miller C., Palavicino C.A., Phadke R., Ryghaug M., Schot J., Silvast A., Stephens J., Stirling A., Turnheim B., Der Vleuten E., Lente H., Yearley S. (2020) Sociotechnical agendas: Reviewing future directions for energy and climate research. Energy Research and Social Science, 70, 101617. DOI: https://doi.org/10.1016/j.erss.2020.101617

Stephan A., Schmidt T.S., Bening C.R., Hoffmann, V.H. (2017) The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan. Research Policy, 46(4), 709-723. DOI: https://doi.org/10.1016/j.respol.2017.01.009

Tahmooresnejad L., Beaudry C. (2019) Capturing the economic value of triadic patents. Scientometrics, 118(1), 127-157. DOI: https://doi.org/10.1007/s11192-018-2959-4

Tomaszewska A., Chu Z., Feng X., O'Kane S., Liu X., Chen J., Ji C., Endler E., Li R., Liu L., Li Y., Zheng S., Vetterlein S., Gao M., Du J., Parkes M., Ouyang M., Marinescu M., Offer G., Wu B. (2019) Lithium-ion battery fast charging: A review. eTransportation, 1, 100011. DOI: https://doi.org/10.1016/j.etran.2019.100011

Van Noorden R. (2014) The rechargeable revolution: A better battery. Nature, 507(7490), 26-28. DOI: https://doi.org/10.1038/507026a

Velázquez-Martínez O., Valio J., Santasalo-Aarnio A., Reuter M., Serna-Guerrero R. (2019) A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries, 5(4), 68. DOI: https://doi.org/10.3390/batteries5040068

Wagner R., Preschitschek N., Passerini S., Leker J., Winter M. (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. Journal of Applied Electrochemistry, 43(5), 481-496. DOI: https://doi.org/10.1007/s10800-013-0533-6

Wong C.Y., Fatimah-Mohamad Z., Keng Z.X., Ariff-Azizan S. (2014) Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies. Energy Policy, 73, 789-802. DOI: https://doi.org/10.1016/j.enpol.2014.05.010

Zhang Q., Li C., Wu Y. (2017) Analysis of Research and Development Trend of the Battery Technology in Electric Vehicle with the Perspective of Patent. Energy Procedia, 105, 4274-4280. DOI: https://doi.org/10.1016/j.egypro.2017.03.918

Zhao Y., Stein P., Bai Y., Al-Siraj M. (2018) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. Journal of Power Sources, 413, 259-283. DOI: https://doi.org/10.1016/j.jpowsour.2018.12.011

Домнич E. (2022) Влияние продуктовых и процессных инноваций на производительность: обзор эмпирических исследований. Форсайт, 16(3), 68-82. DOI: https://doi.org/10.17323/2500-2597.2022.3.68.82

Дхакал T., Мин K.С. (2021) Макроанализ и прогноз перспектив распространения электромобилей. Форсайт, 15(1), 67-73. DOI: https://doi.org/10.17323/2500-2597.2021.1.67.73

Туровец Ю., Проскурякова Л., Стародубцева A., Бьянко В. (2021) Зеленая цифровая трансформация в электроэнергетике. Форсайт, 15(3), 35-51. DOI: https://doi.org/10.17323/2500-2597.2021.3.35.51

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.