Research Landscape of Diabetes mHealth Technologies
PDF (Русский)
Full text

Keywords

generic technologies
Health
health innovation
chronic disease management
diabetes
health services
health self-management
health policy
digitalization strategy

How to Cite

Castillo-ValdezP. F., Rodriguez-SalvadorM., & HoY.-S. (2024). Research Landscape of Diabetes mHealth Technologies. Foresight and STI Governance, 18(1), 19-32. https://doi.org/10.17323/2500-2597.2024.1.19.32

Abstract

In recent years, more and more generic technologies have appeared, allowing one to find answers simultaneously along different dimensions, “fan” solutions for urgent and complex problems are synthesized and cumulative effects emerge. This article analyzes the potential of such technologies using the example of mobile health (mHealth), which provides rapid access to medical services even in the most remote regions, mitigating the inequalities between different segments of the population in this regard. The implementation of mobile health becomes especially important in the context of the rapid spread of chronic and autoimmune diseases, which strongly impact the quality and duration of life. Smart applications based on AI and virtual reality provide the opportunity to manage one’s health by combining patient self-monitoring with rapid consultations with medical staff. By doing so, risks are reduced and physiological and mental well-being is enhanced. This article conducts a large-scale literature review of diabetes management techniques through mobile technology to systematize and identify the most advanced solutions. For such innovations to maximize their impact, public health policies must be aligned with a digitalization strategy.

https://doi.org/10.17323/2500-2597.2024.1.19.32
PDF (Русский)
Full text

References

Abbasi R., Zare S., Ahmadian L. (2020) Investigating the attitude of patients with chronic diseases about using mobile health. International Journal of Technology Assessment in Health Care, 36(2), 139-144. DOI: https://doi.org/10.1017/S0266462320000070

Aguilera A., Figueroa C.A., Hernandez-Ramos R., Sarkar U., Cemballi A., Gomez-Pathak L., Miramontes J., Yom-Tov E., Chakraborty B., Yan X., Xu J., Modiri A., Aggarwal J., Jay Williams J., Lyles C. R. (2020) mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study. BMJ Open, 10(8), e034723. DOI: https://doi.org/10.1136/bmjopen-2019-034723

Ahmed S.H., Ewins D.L., Bridges J., Timmis A., Payne N., Mooney C., MacGregor C. (2020) Do-It-Yourself (DIY) Artificial Pancreas Systems for Type 1 Diabetes: Perspectives of Two Adult Users, Parent of a User and Healthcare Professionals. Advances in Therapy, 37(9), 3929-3941. DOI: https://doi.org/10.1007/s12325-020-01431-w

Al Hayek A.A., Al Dawish M.A. (2020) Assessing Diabetes Distress and Sleep Quality in Young Adults with Type 1 Diabetes Using FreeStyle Libre: A Prospective Cohort Study. Diabetes Therapy, 11(7), 1551-1562. DOI: https://doi.org/10.1007/s13300-020-00849-3

Alanzi T., Bah S., Alzahrani S., Alshammari S., Almunsef F. (2018) Evaluation of a mobile social networking application for improving diabetes Type 2 knowledge: An intervention study using WhatsApp. Journal of Comparative Effectiveness Research, 7(9), 891-899. DOI: https://doi.org/10.2217/cer-2018-0028

Alfonsi J.E., Choi E.E.Y., Arshad T., Sammott S.S., Pais V., Nguyen C., Maguire B.R., Stinson J.N., Palmert M.R. (2020) Carbohydrate Counting App Using Image Recognition for Youth with Type 1 Diabetes: Pilot Randomized Control Trial. JMIR Mhealth and Uhealth, 8(10), e22074. DOI: https://doi.org/10.2196/22074

Arakawa T., Tomoto K., Nitta H., Toma K., Takeuchi S., Sekita T., Minakuchi S., Mitsubayashi K. (2020) A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement. Analytical Chemistry, 92(18), 12201-12207. DOI: https://doi.org/10.1021/acs.analchem.0c01201

Baig M.M., GholamHosseini H., Gutierrez J., Ullah E., Lindén M. (2021) Early Detection of Prediabetes and T2DM Using Wearable Sensors and Internet-of-Things-Based Monitoring Applications. Applied Clinical Informatics, 12(1), 1-9. DOI: https://doi.org/10.1055/s-0040-1719043

Beach C., Cooper G., Weightman A., Hodson-Tole E.F., Reeves N.D., Casson A.J. (2021) Monitoring of Dynamic Plantar Foot Temperatures in Diabetes with Personalised 3D-Printed Wearables. Sensors, 21(5), 1717. DOI: https://doi.org/10.3390/s21051717

Cirilli I., Silvestri S., Marcheggiani F., Olivieri F., Galeazzi R., Antonicelli R., Recchioni R., Marcheselli F., Bacchetti T., Tiano L., Orlando P. (2019) Three Months Monitored Metabolic Fitness Modulates Cardiovascular Risk Factors in Diabetic Patients. Diabetes & Metabolism Journal, 43(6), 893-897. DOI: https://doi.org/10.4093/dmj.2018.0254

Ding H., Fatehi F., Maiorana A., Bashi N., Hu W., Edwards I. (2019) Digital health for COPD care: The current state of play. Journal of Thoracic Disease, 11, S2210-S2220. DOI: https://doi.org/10.21037/jtd.2019.10.17

Ernsting C., Stühmann L.M., Dombrowski S.U., Voigt-Antons J.N., Kuhlmey A., Gellert P. (2019) Associations of Health App Use and Perceived Effectiveness in People with Cardiovascular Diseases and Diabetes: Population-Based Survey. JMIR Mhealth and Uhealth, 7(3), e12179. DOI: https://doi.org/10.2196/12179

Franc S., Hanaire H., Benhamou P.Y. et al. (2020) DIABEO System Combining a Mobile App Software with and without Telemonitoring versus Standard Care: A Randomized Controlled Trial in Diabetic Patients Poorly Controlled with a Basal-Bolus Insulin Regimen. Diabetes Technology and Therapeutics, 22(12), 904-911. DOI: https://doi.org/10.1089/dia.2020.0021

Fu H.Z., Wang M.H., Ho Y.S. (2013) Mapping of drinking water research: A bibliometric analysis of research output during 1992-2011. Science of the Total Environment, 443, 757-765. DOI: https://doi.org/10.1016/j.scitotenv.2012.11.061

IDF (2021) IDF Diabetes Atlas 2021 (10th ed.), Brussels: International Diabetes Federation. Retrieved from https://diabetesatlas.org/atlas/tenth-edition/, accessed 08.03.2023.

Islam T.T., Ahmed M.S., Hassanuzzaman M., Bin Amir S.A., Rahman T. (2021) Blood Glucose Level Regression for Smartphone PPG Signals Using Machine Learning. Applied Sciences, 11(2), 618. DOI: https://doi.org/10.3390/app11020618

Jain A., Krishnan R., Rogye A., Natarajan S. (2021) Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy. Indian Journal of Ophthalmology, 69(11), 3150-3154. DOI: https://doi.org/10.4103/ijo.IJO_3808_20

Jebaseeli T.J., Durai C.A., Peter J.D. (2020) IOT based sustainable diabetic retinopathy diagnosis system. Sustainable Computing: Informatics & Systems, 28 (2020), 100272. DOI: https://doi.org/10.1016/J.SUSCOM.2018.08.004

Jiwani R., Dennis B., Bess C., Monk S., Meyer K., Wang J., Espinoza S. (2021) Assessing acceptability and patient experience of a behavioral lifestyle intervention using fitbit technology in older adults to manage type 2 diabetes amid COVID-19 pandemic: A focus group study. Geriatric Nursing, 42 (2020), 57-64. DOI: https://doi.org/10.1016/j.gerinurse.2020.11.007

Kato S., Ando M., Honda H., Yoshida Y., Imaizumi T., Yamamoto N., Maruyama S. (2020) Effectiveness of Lifestyle Intervention Using the Internet of Things System for Individuals with Early Type 2 Diabetes Mellitus. Internal Medicine, 59(1), 45-53. DOI: https://doi.org/10.2169/internalmedicine.3150-19

Keller R., Hartmann S., Teepe G.W., Lohse K.M., Alattas A., Tudor Car L., Müller-Riemenschneider F., von Wangenheim F., Mair J.L., Kowatsch T. (2022) Digital Behavior Change Interventions for the Prevention and Management of Type 2 Diabetes: Systematic Market Analysis. Journal of Medical Internet Research, 24(1), e33348. DOI: https://doi.org/10.2196/33348

Kumar S., Nilsen W.J., Abernethy A., Atienza A., Patrick K., Pavel M., Swendeman D. (2013) Mobile Health Technology Evaluation. American Journal of Preventive Medicine, 45(2), 228-236. DOI: https://doi.org/10.1016/j.amepre.2013.03.017

Leung T.I., Goldstein M.K., Musen M.A., Cronkite R., Chen J.H., Gottlieb A., Leitersdorf E. (2017) The new HIT: Human health information technology. Studies in Health Technology and Informatics, MEDINFO: Precision Healthcare through Informatics, 245, 768-772. DOI: https://doi.org/10.3233/978-1-61499-830-3-768

Li J., Sun L., Hou Y., Chen L. (2021) Cost-Effectiveness Analysis of a Mobile-Based Intervention for Patients with Type 2 Diabetes Mellitus. International Journal of Endocrinology, 2021, 8827629. DOI: https://doi.org/10.1155/2021/8827629

Lim K., Chan S.Y., Lim S.L., Tai B.C., Tsai C., Wong S.R., Ang S.M., Yew T.W., Tai E.S., Yong E.L. (2021) A Smartphone App to Restore Optimal Weight (SPAROW) in Women With Recent Gestational Diabetes Mellitus: Randomized Controlled Trial. JMIR Mhealth and Uhealth, 9(3), e22147. DOI: https://doi.org/10.2196/22147

Luo J., White-Means S. (2021) Evaluating the Potential Use of Smartphone Apps for Diabetes Self-Management in an Underserved Population: A Qualitative Approach. International Journal of Environmental Research and Public Health, 18(18), 9886. DOI: https://doi.org/10.3390/ijerph18189886

Malerbi F.K., Dal Fabbro A.L., Vieira P.B., Franco L.J. (2020) The feasibility of smartphone based retinal photography for diabetic retinopathy screening among Brazilian Xavante Indians. Diabetes Research and Clinical Practice, 168, 108380. DOI: https://doi.org/10.1016/j.diabres.2020.108380

Mao N., Wang M.H., Ho Y.S. (2010) A bibliometric study of the trend in articles related to risk assessment published in Science Citation Index. Human and Ecological Risk Assessment, 16(4), 801-824. DOI: https://doi.org/10.1080/10807039.2010.501248

Middleton T., Constantino M., McGill M., D'Souza M., Twigg S.M., Wu T., Thiagalingam A., Chow C., Wong J. (2021) An Enhanced SMS Text Message-Based Support and Reminder Program for Young Adults with Type 2 Diabetes (TEXT2U): Randomized Controlled Trial. Journal of Medical Internet Research, 23(10), e27263. DOI: https://doi.org/10.2196/27263

Nahum-Shani I., Smith S.N., Spring B.J., Collins L.M., Witkiewitz K., Tewari A., Murphy S.A. (2016) Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support. Annals of Behavioral Medicine, 52(6), 446-462. DOI: https://doi.org/10.1007/s12160-016-9830-8

Nasser A.R., Hasan A.M., Humaidi A.J., Alkhayyat A., Alzubaidi L., Fadhel M.A., Santamaría J., Duan Y. (2021) IoT and Cloud Computing in Health-Care: A New Wearable Device and Cloud-Based Deep Learning Algorithm for Monitoring of Diabetes. Electronics, 10(21), 2719. DOI: https://doi.org/10.3390/electronics10212719

Nepper M.J., McAtee J.R., Wheeler L., Chai W. (2019) Mobile Phone Text Message Intervention on Diabetes Self-Care Activities, Cardiovascular Disease Risk Awareness, and Food Choices among Type 2 Diabetes Patients. Nutrients, 11(6), 1314. DOI: https://doi.org/10.3390/nu11061314

Nunes F., Madureira P., Rego S., Braga C., Moutinho R., Oliveira T., Soares F. (2021) A Mobile Tele-Ophthalmology System for Planned and Opportunistic Screening of Diabetic Retinopathy in Primary Care. IEEE Access, 9, 83740-83750. DOI: https://doi.org/10.1109/ACCESS.2021.3085404

Omboni S., Ballatore T., Rizzi F., Tomassini F., Panzeri E., Campolo L. (2021) Telehealth at scale can improve chronic disease management in the community during a pandemic: An experience at the time of COVID-19. PLoS ONE, 16(9), e0258015. DOI: https://doi.org/10.1371/journal.pone.0258015

Pustozerov E.A., Tkachuk A., Vasukova E.A., Anopova A.D., Kokina M.A., Gorelova I.V., Pervunina T.M., Grineva E.N., Popova P.V. (2020) Machine Learning Approach for Postprandial Blood Glucose Prediction in Gestational Diabetes Mellitus. IEEE Access, 8, 219308-219321. DOI: https://doi.org/10.1109/ACCESS.2020.3042483

Rghioui A., Lloret J., Sendra S., Oumnad A. (2020) A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms. Healthcare, 8(3), 348. DOI: https://doi.org/10.3390/healthcare8030348

Ronquillo Y., Meyers A., Korvek S.J. (2022) Digital Health, Treasure Island, FL: StatPearls Publishing.

Sawaryn B., Klaassen M., van Beijnum B.J., Zwart H., Veltink P.H. (2021) Identification of Movements and Postures Using Wearable Sensors for Implementation in a Bi-Hormonal Artificial Pancreas System. Sensors, 21(17), 5954. DOI: https://doi.org/10.3390/s21175954

Sharma A., Harrington R.A., McClellan M.B., Turakhia M.P., Eapen Z.J., Steinhubl S., Peterson E.D. (2018) Using digital health technology to better generate evidence and deliver evidence-based care. Journal of the American College of Cardiology, 71(23), 2680-2690. DOI: https://doi.org/10.1016/j.jacc.2018.03.523

Shaw S.E., Seuren L.M., Wherton J., Cameron D., A'Court C., Vijayaraghavan S., Morris J., Bhattacharya S., Greenhalgh T. (2020) Video Consultations between Patients and Clinicians in Diabetes, Cancer, and Heart Failure Services: Linguistic Ethnographic Study of Video-Mediated Interaction. Journal of Medical Internet Research, 22(5), e18378. DOI: https://doi.org/10.2196/18378

Silva B.M.C., Rodrigues J.J.P.C., de la Torre Díez I., López-Coronado M., Saleem K. (2015) Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics, 56, 265-272. DOI: https://doi.org/10.1016/j.jbi.2015.06.003

Song C., Yang Y., Tu X., Chen Z., Gong J., Lin C. (2021) A Smartphone-Based Fluorescence Microscope with Hydraulically Driven Optofluidic Lens for Quantification of Glucose. IEEE Sensors Journal, 21(2), 1229-1235. DOI: https://doi.org/10.1109/JSEN.2020.3019889

Stolfi P., Castiglione F. (2021) Emulating complex simulations by machine learning methods. BMC Bioinformatics, 22(S14), 483. DOI: https://doi.org/10.1186/s12859-021-04354-7

Stoyanov S.R., Hides L., Kavanagh D.J., Zelenko O., Tjondronegoro D., Mani M. (2015) Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR mHealth and uHealth, 3(1), e27. DOI: https://doi.org/10.2196/mhealth.3422

Torreblanca-González J., Gómez-Martín B., Hernández Encinas A., Martín-Vaquero J., Queiruga-Dios A., Martínez-Nova A. (2021) The Use of Infrared Thermography to Develop and Assess a Wearable Sock and Monitor Foot Temperature in Diabetic Subjects. Sensors, 21(5), 1821. DOI: https://doi.org/10.3390/s21051821

Vaquer A., Baron E., de la Rica R. (2021) Detection of low glucose levels in sweat with colorimetric wearable biosensors. Analyst, 146, 3273. DOI: https://doi.org/10.1039/D1AN00283J

Velardo C., Clifton D., Hamblin S., Khan R., Tarassenko L., Mackillop L. (2021) Toward a Multivariate Prediction Model of Pharmacological Treatment for Women with Gestational Diabetes Mellitus: Algorithm Development and Validation. Journal of Medical Internet Research, 23(3), e21435. DOI: https://doi.org/10.2196/21435

Wang M.H., Ho Y.S. (2011) Research articles and publication trends in environmental sciences from 1998 to 2009. Archives of Environmental Science, 5, 1-10.

Wang C.C., Ho Y.S. (2016) Research trend of metal-organic frameworks: A bibliometric analysis. Scientometrics, 109 (1), 481-513. DOI: https://doi.org/10.1007/s11192-016-1986-2

Wang D., Ouyang J., Zhou P., Yan J., Shu L., Xu X. (2021) A Novel Low-Cost Wireless Footwear System for Monitoring Diabetic Foot Patients. IEEE Transactions on Biomedical Circuits and Systems, 15(1), 43-54. DOI: https://doi.org/10.1109/TBCAS.2020.3043538

Wang X., Li F., Cai Z., Liu K., Li J., Zhang B., He J. (2018) Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Analytical and Bioanalytical Chemistry, 410(10), 2647-2655. DOI: https://doi.org/10.1007/s00216-018-0939-4

Zamanillo-Campos R., Serrano-Ripoll M. J., Taltavull-Aparicio J. M., Gervilla-García E., Ripoll J., Fiol-deRoque M. A., Boylan A. M., Ricci-Cabello I. (2022) Patients' Views on the Design of DiabeText, a New mHealth Intervention to Improve Adherence to Oral Antidiabetes Medication in Spain: A Qualitative Study. International Journal of Environmental Research and Public Health, 19, 1902. DOI: https://doi.org/10.3390/ijerph19031902

Zhang G.F., Xie S.D., Ho Y.S. (2010) A bibliometric analysis of world volatile organic compounds research trends. Scientometrics, 83 (2), 477-492. DOI: https://doi.org/10.1007/s11192-009-0065-3

Zhang Y., Guo X., Zhang N., Yan X., Li M., Zhou M., He H., Li Y., Guo W., Zhang M., Zhang J., Ma G. (2021) Effect of Mobile-Based Lifestyle Intervention on Body Weight, Glucose and Lipid Metabolism among the Overweight and Obese Elderly Population in China: A Randomized Controlled Trial Protocol. International Journal of Environmental Research and Public Health, 18(9), 4854. DOI: https://doi.org/10.3390/ijerph18094854

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.