Аннотация
В статье представлен подробный анализ мирового рынка микроводорослей, включая научно-технологические возможности и перспективы их промышленного выращивания и создания производной продукции. Системно оцениваются коммерческий потенциал микроводорослей в разных регионах мира, наиболее перспективные штаммы, типы продуктов и потенциальные сферы их применения, а также траектория дальнейшего развития рынка. Научно-технологический интерес к теме проанализирован на базе ежегодной динамики числа статей, которые содержат ключевое слово «микроводоросли» и опубликованы в журналах, индексируемых Scopus. Результаты представлены в хронологическом, категориальном и региональном измерениях, что дает многомерную картину эволюции внимания ученых во времени и в разных географических контекстах. Коммерческий потенциал детально проанализирован на региональном уровне с акцентом на ключевые центры разработки микроводорослевой продукции: США, Германию, Китай и Японию. В ходе исследования учитывалась преобладающая динамика рынка в каждом регионе, что позволило комплексно оценить конъюнктуру.
К значимым результатам исследования относятся подробно описанные перспективы развития рынка микроводорослей, новый обоснованный подход, обогащающий существующие представления об этом рынке. Его сегментация по сферам применения продукции, включая производство нутрицевтиков и фармацевтических препаратов, еды и напитков, косметики, кормов для животных и биотоплива, позволила выявить направления устойчивого роста. Среднегодовые темпы роста мирового рынка микроводорослей прогнозируются на уровне 6.8%, к 2030 г. объем этого рынка достигнет 2 млрд. долл., что свидетельствует о высоком потенциале производных продуктов в различных отраслях и о важности развития биоэкономики в целом.
Литература
Воробьев В. В., Кожевников Ю. А., Щекочихин Ю. М. (2015) Микроводоросли для производства энергетической биомассы и топлива. Инновации в сельском хозяйстве, 2, 235-243.
Пилигаев А.В., Самойлова Ю.И., Сорокина К.Н. (2014) Современное состояние и перспективы развития производства биотоплива из микроводорослей. Сельскохозяйственные науки и агропромышленный комплекс на рубеже веков, 8, 21-27.
Стребков Д.С., Щекочихин Ю.М., Росс М.Ю. (2012) Основные направления биотехнологического развития возобновляемой энергетики для производства альтернативных топлив из растительного сырья. Вестник ВИЭСХ, 1(6), 43-50.
Abeer A.Z., Hammad D.M., Sharaf E.M. (2015) Antioxidant and Anticancer Activity of Spirulina Platensis Water Extracts. International Journal of Pharmacology, 11 (7), 846-851. DOI: https://doi.org/10.3923/ijp.2015.846.851
Abu Zaid A.A., Hammad D.M., Sharaf E.M. (2015) Antioxidant and anticancer activity of spirulina platensis water extracts. International Journal of Pharmaceutics, 11, 846-851. DOI: https://doi.org/10.3923/ijp.2015.846.851
Ahmad I., Abdullah N., Iwamoto K., Yuzir A. (2021) The Contribution of Microalgae in Bio-refinery and Resource Recovery: A Sustainable Approach Leading to Circular Bioeconomy. Chemical Engineering Transactions, 89, 391-396. DOI: https://doi.org/10.3303/CET2189066
Araújo R., Vázquez Calderón F., Sánchez López J.S., Azevedo I.C., Bruhn A., Fluch S., Garcia Tasende M., Ghaderiardakani F., Ilmjärv T., Laurans M., Mac Monagail M., Mangini S., Peteiro C., Rebours C., Stefansson T., Ullmann J. (2021) Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Frontiers in Marine Science, 7, 626389. DOI: https://doi.org/10.3389/fmars.2020.626389
Asada R., Cardellini G., Mair-Bauernfeind C., Wenger J., Haas V., Holzer D., Stern T. (2020) Effective bioeconomy? A MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations. Technological Forecasting and Social Change, 153, 119946. 10.1016/j.tec hfore.2020.119946. DOI: https://doi.org/10.1016/j.techfore.2020.119946
Barkia I., Saari N., Manning S.R. (2019) Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 17(5), 304. DOI: https://doi.org/10.3390/md17050304
Bauer F. (2018) Narratives of biorefinery innovation for the bioeconomy: Conflict, consensus or confusion? Environmental Innovation and Societal Transitions, 28, 96-107. DOI: https://doi.org/10.1016/j.eist.2018.01.005
Befort N. (2020) Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields. Technological Forecasting and Social Change, 153, 119923. DOI: https://doi.org/10.1016/j.techfore.2020.119923
Borowitzka M.A. (2018) Biology of Microalgae. In: Microalgae in Health and Disease Prevention (eds. I.A. Levine, J. Fleurence), Cambridge, MA: Academic Press, pp. 23-72. DOI: https://doi.org/10.1016/B978-0-12-811405-6.00003-7
Bugge M.M., Hansen T., Klitkou A. (2016) What is the bioeconomy? A review of the literature. Sustainability, 8(7), 691. DOI: https://doi.org/10.3390/su8070691
Camacho F., Macedo A., Malcata F. (2019) Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Marine Drugs, 17(6), 312. DOI: https://doi.org/10.3390/md17060312
Chakraborty С., Pinaki R., Manasi R., Chatterjee R. (2019) Applications of bio-colour in dairy industry. The Pharma Innovation Journal, 8(1), 126-138.
Chen H., Wang X., Wang Q. (2020) Microalgal biofuels in China: The past, progress and prospects. GCB Bioenergy, 12(12), 1044-1065. DOI: https://doi.org/10.1111/gcbb.12741
Chen J., Wang Y., Benemann J., Zhang X., Hu H., Qin S. (2016) Microalgal industry in China: Challenges and prospects. Journal of Applied Phycology, 28, 715-725. DOI: https://doi.org/10.1007/s10811-015-0720-4
Chernova N.I., Korobkova T.P., Kiseleva S.V., Zaytsev S.I., Radomskii N.V. (2012) Microalgae as source of energy: current situation and perspectives of use. In: Sustainable Manufacturing (ed. G. Seliger), Heidelber, Dordrecht, London, New York: Springer, рр. 221-224. DOI: https://doi.org/10.1007/978-3-642-27290-5_34
Chunzhuk E., Grigorenko A., Kiseleva S., Chernova N., Vlaskin M., Ryndin K., Butyrin A., Ambaryan G., Dudoladov A. (2023) Effects of Light Intensity on the Growth and Biochemical Composition in Various Microalgae Grown at High CO2 Concentrations. Plants, 12. 3876. DOI: https://doi.org/10.3390/plants12223876
Cid A., Prado R., Rioboo C., Suarez-Bregua P., Herrero C. (2013) Use of microalgae as biological indicators of pollution: Looking for new relevant cytotoxicity endpoints. In: Microalgae: Biotechnology, Microbiology and Energy (ed. M.N. Johnsen), New York: Nova Science Publishers, pp. 311-323.
Das P., Nagappan S., AbdulQuadir M., Thaher M., Khan S., Mahata C., Hareb Al-Jabri, Vatland A.K., Kumar G. (2021) Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20. DOI: https://doi.org/10.1016/j.jbiotec.2021.09.003
Enzing C., Ploeg M., Barbosa M., Sijtsma L., Vigani M., Parisi C., Rodriguez Cerezo E. (2014) Microalgae-based products for the food and feed sector: An outlook for Europe, Luxembourg: Publications Office of the European Union.
European Commission (2020) Farm to Fork Strategy. For a fair, healthy and environmentally-friendly food system, Brussels: European Commission.
European Commission (2022) EU Bioeconomy Strategy Progress Report. European Bioeconomy policy: stocktaking and future developments (Report COM (2022) 283 final), Brussels: European Commission.
Fatima N., Emambux M.N., Olaimat A.N., Stratakos A., Nawaz A., Wahyono A., Gul K., Park J., Hafiz Muhammad Shahbaz H.M. (2023) Recent advances in microalgae, insects, and cultured meat as sustainable alternative protein sources. Food and Humanity, 1, 731-741. DOI: https://doi.org/10.1016/j.foohum.2023.07.009
Fernandez F.G.A., Reis A., Wijffels R.H., Barbosa M., Verdelho V., Llamas B. (2021) The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. DOI: https://doi.org/10.1016/j.nbt.2020.11.011
Fu Y., Wang Y., Yi L., Liu J., Yang S., Liu B., Chen F., Sun H. (2023) Lutein production from microalgae: A review. Bioresource Technology, 376, 128875. DOI: https://doi.org/10.1016/j.biortech.2023.128875
Fukuda S.Y., Iwamoto K., Atsumi M., Yokoyama A., Nakayama T., Ishida K., Inouye I., Shiraiwa Y. (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: A bioremediation strategy. Journal of Plant Resources, 127(1), 79-89. DOI: https://doi.org/10.1007/s10265-013-0596-9
Garrido-Cardenas J.A., Manzano-Agugliaro F., Acien-Fernandez F.G., Molina-Grima E. (2018) Microalgae research worldwide. Algal Research, 35, 50-60.
Gururani P., Bhatnagar P., Kumar V., Vlaskin M.S., Grigorenko A.V. (2022) Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water, 14(22), 3784. DOI: https://doi.org/10.3390/w14223784
Henchion M., Hayes M., Mullen A.M., Fenelon M., Tiwari B. (2017) Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), 53. DOI: https://doi.org/10.3390/foods6070053
Herrador M. (2016) The Microalgae/Biomass Industry in Japan - An Assessment of Cooperation and Business Potential with European Companies, Tokyo: EU-Japan Centre for Industrial Cooperation.
Hossain N., Mahlia T.M.I., Saidur R. (2019) Latest development in microalgae-biofuel production with nano-additives. Biotechnology for Biofuels and Bioproducts, 12, 125. DOI: https://doi.org/10.1186/s13068-019-1465-0
Hu J., Nagarajan D., Zhang Q., Chang J.-S., Lee D.-J. (2018) Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. DOI: https://doi.org/10.1016/j.biotechadv.2017.09.009
Kandasamy S., Zhang B., He Z., Bhuvanendran N., Elseesy A., Wang Q., Narayanan M., Thangavel P., Dar M. (2022) Microalgae as a multipotential role in commercial applications: Current scenario and future perspectives. Fuel, 308, 122053. DOI: https://doi.org/10.1016/j.fuel.2021.122053
Khan M.I., Shin J.H., Kim J.D. (2018) The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36. DOI: https://doi.org/10.1186/s12934-018-0879-x
Kuech A., Breuer M., Popescu I. (2023) Research for PECH Committee - The future of the EU algae sector, Brussels: European Parliament.
Kuldipsinh C., Tiwari N., Patani P. (2023) Alage: An Extensive Analysis Of Its Role In The Cosmetic Landscape. Journal of Population Therapeutics & Clinical Pharmacology, 30(1), 3826. DOI: https://doi.org/10.53555/jptcp.v30i1.3826
Kumar K.J., Gururani P., Vlaskin M.S., Parveen A., Nanda M., Kurbatova A., Gautam P., Grigorenko A.V. (2022) Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production. Environmental Technology & Innovation, 26, 102340. DOI: https://doi.org/10.1016/j.eti.2022.102340
Kuppan P., Sudharsanam A., Venkateswarlu K., Megharaj M. (2023) Solar technology-closed loop synergy facilitates low-carbon circular bioeconomy in microalgal wastewater treatment. Clean Water, 6, 43. DOI: https://doi.org/10.1038/s41545-023-00256-8
Lin J.-H., Lee D.-J., Chang J.-S. (2015) Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421-428. DOI: https://doi.org/10.1016/j.biortech.2014.09.099
Lucakova S., Branyikova I., Hayes M. (2022) Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Applied Sciences, 12, 4402. DOI: https://doi.org/10.3390/app12094402
Luzardo-Ocampo I., Ramírez-Jiménez A.K., Yañez J., Mojica L., Luna-Vital D.A. (2021) Technological Applications of Natural Colorants in Food Systems: A Review. Foods, 10, 634. DOI: https://doi.org/10.3390/foods10030634
Machado Sierra E., Serrano M.C., Manares A., Guerra A., Aranguren Díaz Y. (2021) Microalgae: Potential for Bioeconomy in Food Systems. Applied Sciences, 11, 11316. DOI: https://doi.org/10.3390/app112311316
Makarova E.I., Oturina I.P., Sidyakin A.I. (2009) Applied aspects of the use of microalgae - inhabitants of aquatic ecosystems. Ecosystems, 1(20), 120-133.
Maltsev Y.I., Konovalenko T.V., Barantsova I.A., Maltseva I.A., Maltseva K.I. (2017) Prospects of using algae in biofuel production. Regulatory Mechanisms in Biosystems, 3(8), 455-460. DOI: https://doi.org/10.15421/021770
Manayi A., Abdollahi M., Raman T., Nabavi S.F., Habtemariam S., Daglia M., Nabavi S.M. (2016) Lutein and cataract: From bench to bedside. Critical Reviews in Biotechnology, 36(5), 829-839. DOI: https://doi.org/10.3109/07388551.2015.1049510
Masojídek J., Lhotský R., Štěrbová K., Zittelli C.G., Torzillo G. (2023) Solar bioreactors used for the industrial production of microalgae. Applied Microbiology and Biotechnology, 107, 1-20. DOI: https://doi.org/10.1007/s00253-023-12733-8
McCormick K., Kautto N. (2013) The bioeconomy in Europe: An overview. Sustainability, 5(6), 2589-2608. DOI: https://doi.org/10.3390/su5062589
Mendonça I., Faria M., Rodrigues F., Cordeiro N. (2024) Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectives. Science of The Total Environment, 909, 168414. DOI: https://doi.org/10.1016/j.scitotenv.2023.168414
Moreira J.B., Duarte S.T., Duarte J.S., Bezerra P.Q.M., Greque de Morais M., Vieira Costa J.A. (2023) Role of microalgae in circular bioeconomy: From waste treatment to biofuel production. Clean Technologies and Environmental Policy, 25, 427-437. DOI: https://doi.org/10.1007/s10098-021-02149-1
Navarro F., Forján E., Vázquez M., Montero Z., Bermejo E., Castaño M.Á., Toimil A., Chagüaceda E., García-Sevillano M.Á., Sánchez M., Domínguez M.J., Pásaro R., Garbayo I., Vílchez C., Vega J.M. (2016) Microalgae as a safe food source for animals: Nutritional characteristics of the acidophilic microalga Coccomyxa onubensis. Food and Nutrition Research, 60, 30472. DOI: https://doi.org/10.3402/fnr.v60.30472
O'Neill E.A., Rowan N.J. (2022) Microalgae as a natural ecological bioindicator for the simple real-time monitoring of aquaculture wastewater quality including provision for assessing impact of extremes in climate variance - A comparative case study from the Republic of Ireland. Science of the Total Environment, 802, 149800. DOI: https://doi.org/10.1016/j.scitotenv.2021.149800
Onyeaka H., Miri T., Obileke K.C., Hart A., Anumudu C., Zainab T. (2021) Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, 1, 100007. DOI: https://doi.org/10.1016/j.ccst.2021.100007
Pahun J., Fouilleux E., Daviron B. (2018) De quoi la bioéconomie est-elle le nom? Genèse d'un nouveau référentiel d'action publique. Natures Sciences Sociétés, 26, 3-16. DOI: https://doi.org/10.1051/nss/2018020
Panis G., Rosales Carreon J. (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175-190. DOI: https://doi.org/10.1016/j.algal.2016.06.007
Parveen A., Bhatnagar P., Gautam P., Bisht B., Nanda M., Kumar S., Vlaskin M.S., Kumar V. (2023) Enhancing the bio-prospective of microalgae by different light systems and photoperiods. Photochemical & Photobiological Sciences, 22(11), 2687-2698. DOI: https://doi.org/10.1007/s43630-023-00471-9
PMR (2023) Microalgae-based Products Market. Market study on microalgae-based products: market progressing on back of demand for more efficient animal feed solutions. Microalgae market segmented by spirulina, Chlorella, Dunaliella Salina product in food and feed industry, pharmaceutical industry, chemical industry, London: Persistence Market Research.
Ponnuvel D., Sowndhararajan K., Kim S. (2023) A Review of the Harvesting Techniques of Microalgae. Water, 15, 3074. DOI: https://doi.org/10.3390/w15173074
Premachandra E., Balasooriya W., Premarathna M., Ekanayaka I. (2023) Nannochloropsis sp.: Culturing and Potential for Fish Feed Production. Photochemical & Photobiological Sciences, 22, 2687-2698. DOI: https://doi.org/10.1007/s43630-023-00471-9
Priya N., Deora P.S., Verma Y., Muhal R.A., Goswami C., Singh T. (2022) Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48(5), 1178-1184. DOI: https://doi.org/10.1016/j.matpr.2021.08.227
Qi Y., Zhang X.J., Renier N., Wu Z., Atkin T., Sun Z., Ozair M.Z., Tchieu J., Zimmer B., Fattahi F., Ganat Y., Azevedo R., Zeltner N., Brivanlou A.H., Karayiorgou M., Gogos J., Tomishima M., Tessier-Lavigne M., Shi S.H., Studer L. (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nature Biotechnology, 35(2), 154-163. https://doi.org/1038/nbt.3777.
Qiao H., Hu D., Ma J., Wang X., Wu H., Wang J. (2019) Feeding effects of the microalga Nannochloropsis sp. on juvenile turbot (Scophthalmus maximus L.). Algal Research, 41, 101540. DOI: https://doi.org/10.1016/j.algal.2019.101540
Radmann E.M., Reinehr C.O., Costa J.A.V. (2007) Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture, 265(1-4), 118-126. DOI: https://doi.org/10.1016/j.aquaculture.2007.02.001
Ramanauske N., Balezentis T., Streimikiene D. (2023) Biomass use and its implications for bioeconomy development: A resource efficiency perspective for the European countries. Technological Forecasting and Social Change, 193, 122628. DOI: https://doi.org/10.1016/j.techfore.2023.122628
Ramírez B.D.G., Valencia J.U.S., Arbelaez A.F.A., Herrera J.M., Rojano B.A. (2020) Oxidative, sensory and fatty acid profile evaluation of a yogurt with docosahexaenoic acid (Dha) extracted from microalgae oil. Revista Chilena de Nutrición, 47, 568-579.
Remize M., Brunel Y., Silva J.L., Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Marine Drugs, 19(2), 113. DOI: https://doi.org/10.3390/md19020113
Saha S.K., Ermis H., Murray P. (2020) Marine Microalgae for Potential Lutein Production. Applied Sciences, 10, 6457. DOI: https://doi.org/10.3390/app10186457
Sanghamitra P., Mazumder D., Mukherjee S. (2021) Treatment of wastewater containing oil and grease by biological method-a review. Journal of Environmental Science and Health, Part A, 56, 394-412. DOI: https://doi.org/10.1080/10934529.2021.1884468
Sarwer A., Hamed S.M., Ahmed I. Osman A.I., Jamil F., Al-Muhtaseb A.H., Alhajeri N.S., Rooney D.W. (2022) Algal biomass valorization for biofuel production and carbon sequestration: A review. Environmental Chemistry Letters, 20, 2797-2851. DOI: https://doi.org/10.1007/s10311-022-01458-1
Singh A., Kushwaha A., Goswami S., Tripathi A., Bhasney S.M., Goswami L., Hussain C.M. (2022) Roadmap from microalgae to biorefinery: A circular bioeconomy approach. In: Trends to Approaching Zero Waste (eds. C.M. Hussain, S. Singh, L. Goswami), Amsterdam: Elsevier, pp. 339-360. 10.1016/B978-0-323- 85403-0.00006-2. DOI: https://doi.org/10.1016/B978-0-323-85403-0.00006-2
Stachowiak B., Szulc P. (2021) Astaxanthin for the Food Industry. Molecules, 26(9), 2666. DOI: https://doi.org/10.3390/molecules26092666
The Insight Partners (2021) Trends and growth analysis reports related to North America Microalgae-Based Products Market, Pune (India): The Insight Partners.
United Nations (2022) World Population Prospects 2022: Summary of Results (Report UN DESA/POP/2022/TR/NO. 3), Vienna: United Nations.
Vázquez-Romero B., Perales J.A., Pereira H., Barbosa M., Ruiz J. (2022). Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. Science of The Total Environment, 837, 155742. DOI: https://doi.org/10.1016/j.scitotenv.2022.155742
Verdelho Vieira V., Cadoret J.-P., Acien F.G., Benemann J. (2022) Clarification of Most Relevant Concepts Related to the Microalgae Production Sector. Processes, 10, 175. DOI: https://doi.org/10.3390/pr10010175
Vignesh K.S., Anandakumar I., Ranjan R., Borah D. (2021) Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Modeling Earth Systems and Environment, 7, 767-781. DOI: https://doi.org/10.1007/s40808-020-00997-2
Vlaskin M.S., Vladimirov G.N. (2018) Hydrothermal Carbonization of Organic Components from Municipal Solid Waste. Theoretical Foundations of Chemical Engineering, 52(6), 996-1003. DOI: https://doi.org/10.1134/S0040579518050421
Wang J., Hu X., Chen J., Wang T., Huang X., Chen G. (2022) The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods, 11, 502. DOI: https://doi.org/10.3390/foods11040502
Wydra S., Hüsing B., Köhler J., Schwarz A., Schirrmeister E., Voglhuber-Slavinsky A. (2021) Transition to the bioeconomy - Analysis and scenarios for selected niches. Journal of Cleaner Production, 294, 126092. DOI: https://doi.org/10.1016/j.jclepro.2021.126092
Zhang S., Zhang L., Xu G., Li F., Li X. (2022) A review on biodiesel production from microalgae: Infuencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. DOI: https://doi.org/10.3389/fmicb.2022.970028

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.