Abstract
Technologies of 3D and 4D bioprinting make it possible to restore or replace tissues and organs, solving the problem of the lack of donor resources and reducing the risks of implant rejection. This article presents the results of a two-stage global survey of specialists in tissue engineering on the prospects of bioprinting in preclinical studies and clinical practice. A picture of possible tracks and horizons upon which the implementation of the considered solutions is possible is presented. According to the results of the survey, in the next two decades it will be possible to recreate tissues and organs suitable for implantation and drug testing. There will be a market for bioprinted products, the problem of organ shortages and adverse reactions to drugs will be solved. These changes may significantly affect not only the practice of biomedical research, drug testing, and medicine, but also the healthcare sector in general, which implies the need for a preventive review of current policies. A practical and accessible tool for identifying and interviewing a large number of experts around the world is proposed, which may be useful for new Foresight studies.
References
Ahmad N., Gopinath P., Dutta R. (2019) 3D printing technology in nanomedicine, St. Louis, MO: Elsevier.
Ahn S.H., Lee J., Park S.A., Kim W.D. (2016) Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 13, 663-676. DOI: https://doi.org/10.1007/s13770-016-0148-1
Albanna M., Binder K.W., Murphy S.V., Kim J., Qasem S.A., Zhao W., Tan J., El-Amin I.B., Dice D.D., Marco J., Green J., Xu T., Skardal A., Holmes J.H., Jackson J.D., Atala A., Yoo J.J. (2019) In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Scientific Reports, 9, 1856. DOI: https://doi.org/10.1038/s41598-018-38366-w
Albritton J.L., Miller J.S. (2017) 3D bioprinting: Improving in vitro models of metastasis with heterogeneous tumor microenvironments. Disease Models and Mechanisms, 10, 3-14. DOI: https://doi.org/10.1242/dmm.025049
Alghuwainem A., Alshareeda A.T., Alsowayan B. (2019) Scaffold-Free 3-D Cell Sheet Technique Bridges the Gap between 2-D Cell Culture and Animal Models. International Journal of Molecular Sciences, 20(19), 4926. DOI: https://doi.org/10.3390/ijms20194926
Almela T., Al-Sahaf S., Brook I.M., Khoshroo K., Rasoulianboroujeni M., Fahimipour F., Tahriri M., Dashtimoghadam E., Bolt R., Tayebi L., Moharamzadeh K. (2018) 3D printed tissue engineered model for bone invasion of oral cancer. Tissue and Cell, 52, 71-77. DOI: https://doi.org/10.1016/j.tice.2018.03.009
Apreda R., Bonaccorsi A., dell'Orletta F., Fantoni G. (2019) Expert forecast and realized outcomes in technology foresight. Technological Forecasting and Social Change, 141, 277-288. DOI: https://doi.org/10.1016/j.techfore.2018.12.006
Ashammakhi N., Ahadian S., Zengjie F., Suthiwanich K., Lorestani F., Orive G., Ostrovidov S., Khademhosseini A. (2018) Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 13(12), 1800148. DOI: https://doi.org/10.1002/biot.201800148
Balls M. (2014) Animal experimentation and alternatives: Time to say goodbye to the Three Rs and hello to humanity? ATLA, 42, 327-333. DOI: https://doi.org/10.1177/026119291404200506
Bandyopadhyay A., Dewangan V.K., Vajanthri K.Y., Poddar S., Mahto S.K. (2018) Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybernetics and Biomedical Engineering, 38, 158-169. DOI: https://doi.org/10.1016/j.bbe.2017.12.001
Bea S. (2020) Opt-out policy and the organ shortage problem: Critical insights and practical considerations. Transplantation Reviews, 35, 100589. DOI: https://doi.org/10.1016/j.trre.2020.100589
Beltagui A., Rosli A., Candi M. (2020) Exaptation in a digital innovation ecosystem: The disruptive impacts of 3D printing. Research Policy, 49, 103833. DOI: https://doi.org/10.1016/j.respol.2019.103833
Bicudo E., Faulkner A., Li P. (2021) Sociotechnical alignment in biomedicine: The 3D bioprinting market beyond technology convergence. Technology in Society, 66, 101668. DOI: https://doi.org/10.1016/j.techsoc.2021.101668
Brandes F. (2009) The UK technology foresight programme: An assessment of expert estimates. Technological Forecasting and Social Change, 76, 869-879. DOI: https://doi.org/10.1016/j.techfore.2009.01.005
Brunello G., Sivolella S., Meneghello R., Ferroni L., Gardin C., Piattelli A., Zavan B., Bressan E. (2016) Powder-based 3D printing for bone tissue engineering. Biotechnology Advances, 34, 740-753. DOI: https://doi.org/10.1016/j.biotechadv.2016.03.009
Burden N., Aschberger K., Chaudhry Q., Clift M.J., Doak S.H., Fowler P., Johnston H., Landsiedel R., Rowland J., Stone V. (2017a) The 3Rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today, 12, 10-13. DOI: https://doi.org/10.1016/j.nantod.2016.06.007
Burden N., Aschberger K., Chaudhry Q., Clift M.J.D., Fowler P., Johnston H., Landsiedel R., Rowland J., Stone V., Doak S.H. (2017b) Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regulatory Toxicology and Pharmacology, 91, 257-266. DOI: https://doi.org/10.1016/j.yrtph.2017.10.021
Cabral B.P., Bonventre J.V., Wieringa F., Mota F.B. (2021) Probing Expert Opinions on the Future of Kidney Replacement Therapies. Artificial Organs, 45(1), 79-87. DOI: https://doi.org/10.1111/aor.13784
Charbe N., McCarron P.A., Tambuwala M.M. (2017) Three-dimensional bio-printing: A new frontier in oncology research. World Journal of Clinical Oncology, 8, 21-36. DOI: https://doi.org/10.5306/wjco.v8.i1.21
Cheluvappa R., Scowen P., Eri R. (2017) Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation. Pharmacology Research and Perspectives, 5, 1-14. DOI: https://doi.org/10.1002/prp2.332
Chen Y., Zhang J., Liu X., Wang S., Tao J., Huang Y., Wu W., Li Y., Zhou K., Wei X., Chen S., Li X., Xu X., Cardon L., Qian Z., Gou M. (2020) Noninvasive in vivo 3D bioprinting. Science Advances, 6, 1-10. DOI: https://doi.org/10.1126/sciadv.aba7406
Choudhury D., Anand S., Naing M.W. (2018) The arrival of commercial bioprinters - Towards 3D bioprinting revolution! International Journal of Bioprinting, 4(2), 139. DOI: https://doi.org/10.18063/IJB.v4i2.139
Colasante C., Sanford Z., Garfein E., Tepper O. (2016) Current Trends in 3D Printing, Bioprosthetics, and Tissue Engineering in Plastic and Reconstructive Surgery. Current Surgery Reports, 4(3), 1-14. DOI: https://doi.org/10.1007/s40137-016-0127-4
Combellack E., Jessop Z.M., Whitaker I.S. (2018) The commercial 3D bioprinting industry. In: 3D Bioprinting for Reconstructive Surgery (eds. D.J. Thomas, Z.M. Jessop, I.S. Whitaker), Amsterdam: Elsevier, pp. 413-421. DOI: https://doi.org/10.1016/B978-0-08-101103-4.00029-6
Correia Carreira S., Begum R., Perriman A.W. (2020) 3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 9(15), 1900554. DOI: https://doi.org/10.1002/adhm.201900554
Daly A.C., Freeman F.E., Gonzalez-Fernandez T., Critchley S.E., Nulty J., Kelly D.J. (2017) 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Advanced Healthcare Materials, 6(22), 1700298. DOI: https://doi.org/10.1002/adhm.201700298
Dey M., Ozbolat I.T. (2020) 3D bioprinting of cells, tissues and organs. Scientific Reports, 10, 14023. DOI: https://doi.org/10.1038/s41598-020-70086-y
Dias J.R., Ribeiro N., Baptista-Silva S., Costa-Pinto A.R., Alves N., Oliveira A.L. (2020) In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Frontiers in Bioengineering and Biotechnology, 8, 85. DOI: https://doi.org/10.3389/fbioe.2020.00085
Doke S.K., Dhawale S.C. (2015) Alternatives to animal testing: A review. Saudi Pharmaceutical Journal, 23, 223-229. DOI: https://doi.org/10.1016/j.jsps.2013.11.002
Duan B. (2017) State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Annals of Biomedical Engineering, 45, 195-209. DOI: https://doi.org/10.1007/s10439-016-1607-5
Faramarzi N., Yazdi I.K., Nabavinia M., Gemma A., Fanelli A., Caizzone A., Ptaszek L.M., Sinha I., Khademhosseini A., Ruskin J.N., Tamayol A. (2018) Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 7(11), 1870043. DOI: https://doi.org/10.1002/adhm.201870043
Fleetwood G., Chlebus M., Coenen J., Dudoignon N., Lecerf C., Maisonneuve C., Robinson S. (2015) Making Progress and Gaining Momentum in Global 3Rs Efforts: How the European Pharmaceutical Industry Is Contributing. Journal of the American Association for Laboratory Animal Science, 54, 192-197.
Fonseca A.C., Melchels F.P.W., Ferreira M.J.S., Moxon S.R., Potjewyd G., Dargaville T.R., Kimber S.J., Domingos M. (2020) Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chemical Reviews, 120, 11128-11174. DOI: https://doi.org/10.1021/acs.chemrev.0c00342
Foresti R., Rossi S., Pinelli S., Alinovi R., Sciancalepore C., Delmonte N., Selleri S., Caffarra C., Raposio E., Macaluso G., Macaluso C., Freyrie A., Miragoli M., Perini P. (2020) In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine. Scientific Reports, 10, 3205. DOI: https://doi.org/10.1038/s41598-020-60196-y
Gao G., Cui X. (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnology Letters, 38, 203-211. DOI: https://doi.org/10.1007/s10529-015-1975-1
Gardin C., Ferroni L., Latremouille C., Chachques J.C., Mitrečić D., Zavan B. (2020) Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells, 9(3), 742. DOI: https://doi.org/10.3390/cells9030742
Garreta E., Oria R., Tarantino C., Pla-Roca M., Prado P., Fernández-Avilés F., Campistol J.M., Samitier J., Montserrat N. (2017) Tissue engineering by decellularization and 3D bioprinting. Materials Today, 20, 166-178. DOI: https://doi.org/10.1016/j.mattod.2016.12.005
Georghiou L., Cassingena Harper J., Keenan M., Miles I., Popper R. (2008) The handbook of technology foresight: Concepts and practice, Cheltenham: Edward Elgar.
Gershlak J.R., Ott H.C. (2020) Bioprinting Organs-Progress Toward a Moonshot Idea. Transplantation, 104, 1310-1311. DOI: https://doi.org/10.1097/TP.0000000000003172
Giacomini K.M., Krauss R.M., Roden D.M., Eichelbaum M., Hayden M.R., Nakamura Y. (2007) When good drugs go bad. Nature, 446, 975-977. DOI: https://doi.org/10.1038/446975a
Gilbert F., O'Connell C.D., Mladenovska T., Dodds S. (2018) Print Me an Organ? Ethical and Regulatory Issues Emerging from 3D Bioprinting in Medicine. Science and Engineering Ethics, 24, 73-91. DOI: https://doi.org/10.1007/s11948-017-9874-6
Goh J.-Y., Weaver R.J., Dixon L., Platt N.J., Roberts R.A. (2015) Development and use of in vitro alternatives to animal testing by the pharmaceutical industry 1980-2013. Toxicology Research, 4, 1297-1307. DOI: https://doi.org/10.1039/C5TX00123D
Government Office for Science (2010) Technology and innovation futures: UK growth opportunities for the 2020s (2010 ed.), London: Government Office for Science.
Government Office for Science (2012) Technology and innovation futures: UK growth opportunities for the 2020s (2012 refresh), London: Government Office for Science.
Government Office for Science (2017) Technology and Innovation Futures 2017, London: Government Office for Science.
Graham M.L., Prescott M.J. (2015) The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. European Journal of Pharmacology, 759, 19-29. DOI: https://doi.org/10.1016/j.ejphar.2015.03.040
Grand View Research (2021) 3D Bioprinting Market Size, Share and Trends Analysis Report by Technology (Magnetic Levitation, Inkjet-based), by Application (Medical, Dental, Biosensors, Bioinks), by Region, and Segment Forecasts, 2021-2028, San Francisco, CA: Grand View Research.
Groeber F., Engelhardt L., Lange J., Kurdyn S., Schmid F.F., Rücker C., Mielke S., Walles H., Hansmann J. (2016) A first vascularized skin equivalent as an alternative to animal experimentation. ALTEX, 33, 415-422. DOI: https://doi.org/10.14573/altex.1604041
Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., Dokmeci M.R. (2018) Bioinks for 3D bioprinting: An overview. Biomaterials Science, 6, 915-946. DOI: https://doi.org/10.1039/c7bm00765e
Haris M.S., Azlan N.H.M., Taher M., Rus S.M., Chatterjee B. (2020) 3D-printed Drugs: A Fabrication of Pharmaceuticals towards Personalized Medicine. IJPER 54(3s), s411-s422. DOI: https://doi.org/10.5530/ijper.54.3s.139
Heinrich M.A., Liu W., Jimenez A., Yang J., Akpek A., Liu X., Pi Q., Mu X., Hu N., Schiffelers R.M., Prakash J., Xie J., Zhang Y.S. (2019) 3D Bioprinting: From Benches to Translational Applications. Nano-Micro Small, 15, e1805510. DOI: https://doi.org/10.1002/smll.201805510
Hesse C.A., Ofosu J.B., Nortey E.N. (2017) Introduction to Nonparametric Statistical Methods, Accra (Ghana): Akrong Publications Limited.
Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. (2017) The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 35, 217-239. DOI: https://doi.org/10.1016/j.biotechadv.2016.12.006
Huang Y., Zhang X.-F., Gao G., Yonezawa T., Cui X. (2017) 3D bioprinting and the current applications in tissue engineering. Biotechnology Journal 12(8), 1600734. DOI: https://doi.org/10.1002/biot.201600734
Hunsberger J., Neubert J., Wertheim J.A., Allickson J., Atala A. (2016) Bioengineering Priorities on a Path to Ending Organ Shortage. Current Stem Cell Reports, 2, 118-127. DOI: https://doi.org/10.1007/s40778-016-0038-4
Irvine J., Martin B.R. (1983) Project Foresight, a Proposal Submitted to the Cabinet Office, Brighton, SPRU, University of Sussex.
Jang J., Yi H.-G., Cho D.-W. (2016) 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science and Engineering, 2, 1722-1731. DOI: https://doi.org/10.1021/acsbiomaterials.6b00129
Jorgensen A.M., Yoo J.J., Atala A. (2020) Solid Organ Bioprinting: Strategies to Achieve Organ Function. Chemical Reviews, 120, 11093-11127. DOI: https://doi.org/10.1021/acs.chemrev.0c00145
Kaivo-oja J. (2017) Towards better participatory processes in technology foresight: How to link participatory foresight research to the methodological machinery of qualitative research and phenomenology? Futures, 86, 94-106. DOI: https://doi.org/10.1016/j.futures.2016.07.004
Kačarević Ž.P., Rider P.M., Alkildani S., Retnasingh S., Smeets R., Jung O., Ivanišević Z., Barbeck M. (2018) An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials, 11, 2199. DOI: https://doi.org/10.3390/ma11112199
Khoshnood N., Zamanian A. (2020) A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting, 19, e00088. DOI: https://doi.org/10.1016/j.bprint.2020.e00088
Kolominsky-Rabas P.L., Djanatliev A., Wahlster P., Gantner-Bär M., Hofmann B., German R., Sedlmayr M., Reinhardt E., Schüttler J., Kriza C. (2015) Technology foresight for medical device development through hybrid simulation: The ProHTA Project. Technological Forecasting and Social Change, 97, 105-114. DOI: https://doi.org/10.1016/j.techfore.2013.12.005
Kumar A., Kargozar S., Baino F., Han S.S. (2019) Additive Manufacturing Methods for Producing Hydroxyapatite and Hydroxyapatite-Based Composite Scaffolds: A Review. Frontiers in Materials, 6. DOI: https://doi.org/10.3389/fmats.2019.00313
Lall S. (2004) Reinventing Industrial Strategy: The Role of Government Policy in Building Industrial Competitiveness. United Nations Conference on Trade and Development Report (G-24 Discussion Paper Series No. 28), New York, Geneva: United Nations.
Leberfinger A.N., Dinda S., Wu Y., Koduru S.V., Ozbolat V., Ravnic D.J., Ozbolat I.T. (2019) Bioprinting functional tissues. Acta Biomaterialia, 95, 32-49. DOI: https://doi.org/10.1016/j.actbio.2019.01.009
Lerman M.J., Lembong J., Gillen G., Fisher J.P. (2018) 3D printing in cell culture systems and medical applications. Applied Physics Reviews, 5, 041109. DOI: https://doi.org/10.1063/1.5046087
Linstone H.A. (2011) Three eras of technology foresight. Technovation, 31, 69-76. DOI: https://doi.org/10.1016/j.technovation.2010.10.001
Loai S., Kingston B.R., Wang Z., Philpott D.N., Tao M., Cheng H.L. (2019) Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine. Regenerative Medicine Frontiers, 1, e190004. DOI: https://doi.org/10.20900/rmf20190004
Lukin I., Musquiz S., Erezuma, I., Al-Tel T.H., Golafshan N., Dolatshahi-Pirouz A., Orive G. (2019) Can 4D bioprinting revolutionize drug development? Expert Opinion on Drug Discovery, 14(10), 953-956. DOI: https://doi.org/10.1080/17460441.2019.1636781
Löwa A., Jevtić M., Gorreja F., Hedtrich S. (2018) Alternatives to animal testing in basic and preclinical research of atopic dermatitis. Experimental Dermatology, 27(5), 476-483. DOI: https://doi.org/10.1111/exd.13498
Mao H., Yang L., Zhu H., Wu L., Ji P., Yang J., Gu Z. (2020) Recent advances and challenges in materials for 3D bioprinting. Progress in Natural Science: Materials International, 30(5), 618-634. DOI: https://doi.org/10.1016/j.pnsc.2020.09.015
Martin B.R. (1995) Foresight in science and technology. Technology Analysis and Strategic Management, 7(2), 139-168. DOI: https://doi.org/10.1080/09537329508524202
Martin B.R. (2010) The origins of the concept of ‘foresight' in science and technology: An insider's perspective. Technological Forecasting and Social Change, 77, 1438-1447. DOI: https://doi.org/10.1016/j.techfore.2010.06.009
Martin B.R., Irvine J. (1989) Research Foresight: Priority setting in science, London: Frances Pinter.
Martin B.R., Johnston R. (1999) Technology Foresight for Wiring Up the National Innovation System. Technological Forecasting and Social Change, 60, 37-54. DOI: https://doi.org/10.1016/S0040-1625(98)00022-5
Masum H., Ranck J., Singer P.A. (2010) Five promising methods for health foresight. Foresight, 12(1), 54-66. DOI: https://doi.org/10.1108/14636681011020182
Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C.T. (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 226, 119536. DOI: https://doi.org/10.1016/j.biomaterials.2019.119536
Mehrban N., Teoh G.Z., Birchall M.A. (2016) 3D bioprinting for tissue engineering: Stem cells in hydrogels. International Journal of Bioprinting, 2(1), 6-19. DOI: https://doi.org/10.18063/IJB.2016.01.006
Mendes F.M.L., Castor K., Monteiro R., Mota F.B., Rocha L.F.M. (2019) Mapping the lab-on-a-chip patent landscape through bibliometric techniques. World Patent Information, 58, 101904. DOI: https://doi.org/10.1016/j.wpi.2019.101904
Miles I. (2010) The development of technology foresight: A review. Technological Forecasting and Social Change, 77, 1448-1456. DOI: https://doi.org/10.1016/j.techfore.2010.07.016
Miles I., Meissner D., Vonortas N.S., Carayannis E. (2017) Technology foresight in transition. Technological Forecasting and Social Change, 119, 211-218. DOI: https://doi.org/10.1016/j.techfore.2017.04.009
Mir T.A., Iwanaga S., Kurooka T., Toda H., Sakai S., Nakamura M. (2019) Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective. International Journal of Bioprinting, 5(1), 153. 1-11. DOI: https://doi.org/10.18063/ijb.v5i1.153
Mir T.A., Nakamura M. (2017) Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. Tissue Engineering, 22(3), 245-256. DOI: https://doi.org/10.1089/ten.teb.2016.0398
Mohanty S., Sanger K., Heiskanen A., Trifol J., Szabo P., Dufva M., Emnéus J., Wolff A. (2016) Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Materials Science and Engineering. C, 61, 180-189. DOI: https://doi.org/10.1016/j.msec.2015.12.032
Mori A., Peña Fernández M., Blunn G., Tozzi G., Roldo M. (2018) 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers, 10(3), 285. DOI: https://doi.org/10.3390/polym10030285
Mosadegh B., Xiong G., Dunham S., Min J.K. (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomedical Materials, 10(3), 034002. DOI: https://doi.org/10.1088/1748-6041/10/3/034002
Mota F., Braga L., Rocha L., Cabral B. (2020) 3D and 4D bioprinted human model patenting and the future of drug development. Nature Biotechnology, 38, 689-694. DOI: https://doi.org/10.1038/s41587-020-0540-1
Mota F., Braga L.A.M., Cabral B.P., Conte Filho C.G. (2021) What is the future of lab-on-a-chip diagnostic devices? Assessing changes in experts' expectations over time. Foresight, 23(6), 640-654. DOI: https://doi.org/10.1108/FS-05-2021-0101
Murphy S.V., de Coppi P., Atala A. (2020) Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering, 4, 370-380. DOI: https://doi.org/10.1038/s41551-019-0471-7
NIPHE (2018) Public Health Foresight Study 2018 - A healthy prospect, Bilthoven (NL): National Institute for Public Health and the Environment.
Ng W.L., Yeong W.Y., Naing M.W. (2016) Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. International Journal of Bioprinting, 2(1), 53-62. DOI: https://doi.org/10.18063/IJB.2016.01.009
Niu S.-Y., Xin M.-Y., Luo J., Liu M.-Y., Jiang Z.-R. (2015) DSEP: A Tool Implementing Novel Method to Predict Side Effects of Drugs. Journal of Computational Biology, 22(12), 1108-1117. DOI: https://doi.org/10.1089/cmb.2015.0129
O'Connell G., Garcia J., Amir J. (2017) 3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering. ACS Biomaterials Science and Engineering, 3(11), 2657-2668. DOI: https://doi.org/10.1021/acsbiomaterials.6b00587
Obregon F., Vaquette C., Ivanovski S., Hutmacher D.W., Bertassoni L.E. (2015) Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. Journal of Dental Research, 94(9), 143S-152S. https://doi.org/10.1177%2F0022034515588885.
Park S.-H., Jung C.S., Min B.-H. (2016) Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Engineering and Regenerative Medicine, 13, 622-635. DOI: https://doi.org/10.1007/s13770-016-0145-4
Peng W., Datta P., Ayan B., Ozbolat V., Sosnoski D., Ozbolat I.T. (2017) 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomaterialia, 57(15), 26-46. DOI: https://doi.org/10.1016/j.actbio.2017.05.025
Pereira Cabral B., da Graça Derengowski Fonseca M., Batista Mota F. (2019a) What is the future of cancer care? A technology foresight assessment of experts' expectations. Economics of Innovation and New Technology, 28, 635-652. DOI: https://doi.org/10.1080/10438599.2018.1549788
Pereira Cabral B., da Graça Derengowski Fonseca M., Mota F.B. (2019b) Long term prevention and vector control of arboviral diseases: What does the future hold? International Journal of Infectious Diseases, 89, 169-174. DOI: https://doi.org/10.1016/j.ijid.2019.10.002
Popper R. (2008) Foresight methodology. In: The Handbook Of Technology Foresight: Concepts and Practice (eds. L. Georghiou, J. Cassingena Harper, M. Keenan, I. Miles, R. Popper), Cheltenham: Edward Elgar, pp. 44-88.
Postma T.J., Alers J.C., Terpstra S., Zuurbier A. (2007) Medical technology decisions in The Netherlands: How to solve the dilemma of technology foresight versus market research? Technological Forecasting and Social Change, 74(9), 1823-1833. DOI: https://doi.org/10.1016/j.techfore.2007.05.011
Richards D.J., Tan Y., Jia J., Yao H., Mei Y. (2013) 3D Printing for Tissue Engineering. Israel Journal of Chemistry, 53, 805-814. DOI: https://doi.org/10.1002/ijch.201300086
Rocha L.F.M., Braga L.A.M., Mota F.B. (2020) Gene Editing for Treatment and Prevention of Human Diseases: A Global Survey of Gene Editing-Related Researchers. Human Gene Therapy, 31(15-16), 852-862. DOI: https://doi.org/10.1089/hum.2020.136
Rosania K. (2013) Synthetic research tools as alternatives to animal models. Lab Animal, 42, 189-190. DOI: https://doi.org/10.1038/laban.306
Schoemaker C.G., van Loon J., Achterberg P.W., van den Berg M., Harbers M.M., den Hertog F.R.J., Hilderink H., Kommer G., Melse J., van Oers H., Plasmans M.H.D., Vonk R.A.A., Hoeymans N. (2019) The Public Health Status and Foresight Report 2014: Four Normative Perspectives on a Healthier Netherlands in 2040. Health Policy, 123(3), 252-259. DOI: https://doi.org/10.1016/j.healthpol.2018.10.014
Sears N.A., Seshadri D.R., Dhavalikar P.S., Cosgriff-Hernandez E. (2016) A Review of Three-Dimensional Printing in Tissue Engineering. Tissue Engineering. Part B, Reviews, 22(4), 298-310. DOI: https://doi.org/10.1089/ten.teb.2015.0464
Shanmugarajah K., Villani V., Madariaga M.L.L., Shalhoub J., Michel S.G. (2014) Current progress in public health models addressing the critical organ shortage. International Journal of Surgery, 12(12), 1363-1368. DOI: https://doi.org/10.1016/j.ijsu.2014.11.011
Silva L.P. (2019) Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting. In: 3D and 4D Printing in Biomedical Applications (ed. M. Maniruzzaman), Weinheim (Germany): Wiley-VCH Verlag GmbH and Co. KGaA, pp. 373-421. DOI: https://doi.org/10.1002/9783527813704.ch15
Singh S., Choudhury D., Yu F., Mironov V., Naing M.W. (2020) In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomaterialia, 101, 14-25. DOI: https://doi.org/10.1016/j.actbio.2019.08.045
Stokes W.S. (2015) Animals and the 3Rs in toxicology research and testing: The way forward. Human and Experimental Toxicology, 34, 1297-1303. https://doi.org/10.1177%2F0960327115598410.
Stratton S., Manoukian O.S., Patel R., Wentworth A., Rudraiah S., Kumbar S.G. (2018) Polymeric 3D Printed Structures for Soft-Tissue Engineering. Journal of Applied Polymer Science, 135(24), 45569. DOI: https://doi.org/10.1002/app.45569
Tarassoli S.P., Jessop Z.M., Al-Sabah A., Gao N., Whitaker S., Doak S., Whitaker I.S. (2018) Skin tissue engineering using 3D bioprinting: An evolving research field. Journal of Plastic, Reconstructive and Aesthetic Surgery, 71(5), 615-623. DOI: https://doi.org/10.1016/j.bjps.2017.12.006
Thayer P., Martinez H., Gatenholm E. (2020) History and Trends of 3D Biopr (ed. J. Crook), New York: Humana, pp. 3-18. DOI: https://doi.org/10.1007/978-1-0716-0520-2_1
Unagolla J.M., Jayasuriya A.C. (2020) Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 18, 100479. DOI: https://doi.org/10.1016/j.apmt.2019.100479
Vanderburgh J., Sterling J.A., Guelcher S.A. (2017) 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening. Annals of Biomedical Engineering, 45(1), 164-179. DOI: https://doi.org/10.1007/s10439-016-1640-4
Vijayavenkataraman S., Yan W.-C., Lu W.F., Wang C.-H., Fuh J.Y.H. (2018) 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews, 132, 296-332. DOI: https://doi.org/10.1016/j.addr.2018.07.004
Vries R.B.M., Leenaars M., Tra J., Huijbregtse R., Bongers E., Jansen J.A., Gordijn B., Ritskes-Hoitinga M. (201) The potential of tissue engineering for developing alternatives to animal experiments: A systematic review. Journal of Tissue Engineering and Regenerative Medicine, 9(7), 771-778. DOI: https://doi.org/10.1002/term.1703
Wang C., Huang W., Zhou Y., He L., He Z., Chen Z., He X., Tian S., Liao J., Lu B., Wei Y., Wang M. (2020a) 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1), 82-91. DOI: https://doi.org/10.1016/j.bioactmat.2020.01.004
Wang Z., Kapadia W., Li C., Lin F., Pereira R.F., Granja P.L., Sarmento B., Cui W. (2020b) Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 329, 237-256. DOI: https://doi.org/10.1016/j.jconrel.2020.11.044
Weinhart M., Hocke A., Hippenstiel S., Kurreck J., Hedtrich S. (2019) 3D organ models - Revolution in pharmacological research? Pharmacological Research, 139, 446-451. DOI: https://doi.org/10.1016/j.phrs.2018.11.002
Whitford W.G., Hoying J.B. (2016) A bioink by any other name: Terms, concepts and constructions related to 3D bioprinting. Future Science OA, 2(3), 1-5. DOI: https://doi.org/10.4155/fsoa-2016-0044
Yang G.H., Yeo M., Koo Y.W., Kim G.H. (2019) 4D Bioprinting: Technological Advances in Biofabrication. Macromolecular Bioscience, 19(5), 1800441. DOI: https://doi.org/10.1002/mabi.201800441
Yang Q., Gao B., Xu F. (2020) Recent Advances in 4D Bioprinting. Biotechnology Journal, 15(1), 1900086. DOI: https://doi.org/10.1002/biot.201900086-10
Yu J., Park S.A., Kim W.D., Ha T., Xin Y.-Z., Lee J., Lee D. (2020) Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers, 12(12), 2958. DOI: https://doi.org/10.3390/polym12122958
Zhang X., Zhang Y. (2015) Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochemistry and Biophysics, 72, 777-782. DOI: https://doi.org/10.1007/s12013-015-0531-x
Zhang Y., Kumar P., Lv S., Di X., Zhao H., Cai Z., Zhao X. (2020) Recent Advances in 3D Bioprinting of Vascularized Tissues. Materials and Design, 199, 109398. DOI: https://doi.org/10.1016/j.matdes.2020.109398
Zhao X., Liu L., Wang J., Xu Y., Zhang W., Khang G., Wang X. (2016) In vitro vascularization of a combined system based on a 3D printing technique. Journal of Tissue Engineering and Regenerative Medicine, 10(10), 833-842. DOI: https://doi.org/10.1002/term.1863
Zhu W., Ma X., Gou M., Mei D., Zhang K., Chen S. (2016) 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 40, 103-112. DOI: https://doi.org/10.1016/j.copbio.2016.03.014

This work is licensed under a Creative Commons Attribution 4.0 International License.